OSGi Tutorial

A Step by Step Introduction to OSGi Programming
Based on the Open Source
Knopflerfish OSGi Framework

Sven Haiges
October 2004
sven.haiges@vodafone.com

Table of Contents

Table of contents i
List of Tables ii
List of Figures iii
1 Introduction 1
2 Installing Knopflerfish OSGi 2
3 Creating your First Bundle 5
3.1 Create a New Project for your First Bundleccoocoiiiiiniiiniiieeee 5
3.2 Create the manifest.mf FIle ...t 5
3.3 Create an Ant Build File ..o 6
3.4 Create the AcCtIVALOT CLasS ..c.ccoeiiiiiiiiiiiiiieirerer ettt sttt 7
3.5 Build and Install your First Bundlecocooooiiiiiiiiieee e 8
4 Creating your First Service 10
4.1 Update the manifest.mf Filecoccooiiiiiiiiiiecee et 10
4.2 Create the Service INterface ..ottt e 11
4.3 Create the Service IMplementationccocciocierieecieiie ettt seae s 11
4.4 Create an Activator that Registers the ServiCe......ccoviviiiiieienieiecieeeee e 11
4.5 Build and Install the Service Bundlecccoooiiiiiiiiiniiieeeeeeeeee 12
5 Using other Services 13
5.1 Update the manifest.mMf Fileccccoiiiiiiiiiiicieccceeceeeee et e 13
5.2 Retrieve a Service —the Dad WaY ...cccocieieriiiieiceeee et 14
5.3 Using a ServiceListener to Dynamically Bind Servicescccocerrrininiinieninienienceene 15
5.4 Using a ServiceTracker to track ServICesccomiiriieiiiniieniieierieeiere e 18

List of References ix

ii

List of Tables

List of Figures

ii

Figure 1: Command Window after clicking the startup.bat file......cccocevirviiniiciniciciceceee, 3
Figure 2: The Knofperfish OSGi DeSKIOP .ooieiirieriiiieiiiierieeiesie ettt eneas 4
Figure 3: KF Desktop after installing the Hello World Bundleocooceviniiienenniiieee 9

Introduction

This tutorial introduces you to OSGi programming based on the open source Knopflerfish
OSGi framework. I chose Knopflerfish, because it is easy to install and provides a great
desktop GUI, that will help you to get your first bundles deployed in an OSGi Framework.

First, the reader is quickly introduced to the installation of Knopflerfish. Second, you
will create your first OSGi bundle and deploy it in this framework. Step by step, you will
create more bundles, register and retrieve services and manage their dependencies. By the
end of this tutorial, you should have a basic understanding of OSGi programming.

Please notice the references at the end of this document for further information about
OSGi and other tutorials. The author would like to tank the maintainers of Knopflerfish
for their great OSGi Framework. Please also have a look at the Knopflerfish website' to
find more about this framework.

Thttp:/ /www.knopflerfish.org

2 Installing Knopflerfish OSGi

Installing Knopfletfish OSGi

Installation of Knopflerfish is really easy. Please point your web browser to
http:/ /www.knopflerfish,org and go to the download page. I recommend to download the
complete framework (approx. 7 MB, including all sources and documentation.

Please make sure, that you have a current Java software development kit installed. We
also assume, that you have access to an IDE such as the open source Eclipse (by the way,
Eclipse is also an OSGi Framework).

Next, open the jar file you just downloaded with WinZip. You can also simply change
the file extension from .jar to .zip and then extract the file in a new directory using <right-
click-on-file>/<extract to...>.

To start the Knopflerfish Framework, you can now simply double-click on the
framework.jar file that you will find in this directory:

<install-directory>/knopflerfish.org/osgi/franmework.jar

I recommend to create a small startup.bat file. Simply copy the following line into a file
called startup.bat and place it into the same directory as the framework.jar file:

java -jar franmework.jar

You should see that a command window opens and soon after that the so-called
Knopflerfish OSGi Desktop is starting up.

Installing Knopflerfish OSGi 3

WINDOWS\System32\cmd.exe
Copyright Z2003-2084 HKnopflerfish. All Rights Reserved.

Bee http: swvuw_knopflerfish.org for more information.
Loading xargs file D:“wpesfh furtwangen osgisknopf lerfish knopflerfizh_ orghosgis

Installed: i ars/logslog_all-1.8.@8.jar <iditld>

Installed: i ars/scmscm_all-1.8.8. jar CidH2)

Installed: i resconsolesconsole_all-1.8.8. jar (idi#3>

Installed: i ars/sutilsutil-1.8.8. jar <(iditd)

Insztalled: fi arsscrinsonsorimson—1.1.3 . jar C(id#is>

Inztalled: fi arssjesdksjsdk-2.2_ jar (idHe>

Insztalled: fi ars-sbundlerepository-sbundlerepository_all-1.1._8_jar {(id#t?YD
Installed: i arssdevicesdevice_all-1.8.8. jar C(id#E>

Installed: i ars/suseradmninsuseradmin_all-1.8.@.jar <idi?>

Installed: i ars/https/http_all-1.8.08. jar (id#i@d>

Installed: i ars/frameworkcommands/frameworkcommands—1.8.8.jar <did#iid>
Installed: i rslogcommandslogcommands—1.8.8. jar {did#i12>

Insztalled: fi arssem_cndsem_cmd-1 .8 8. jar Cid#li3dn

Inztalled: fi ars-sconsolettysconsoletty-1.0.8_jar <(idiid)

Insztalled: fi arssconsoletelnetsconsoletelnet—1.8.0.jar C(idH#i5>
Inztalled: fi arssdesktopsdesktop_all-1.1.8._jar (idHie>

nstalled: file:jars-shttproot-httproot—1.08. r Cid#i17?>

Installed and started: file:jars- traviconstrayicon_all-1.8.0.jar <idHid>
Installed and started: file:jars- trayicon_fw /travyicon_fwu—-1.8.8.jar (id#1?>

** Knopflerfish 05Gi desktop (knopflerfish)
File Edit Bundles WYiew Help

= % H § P B 2 a E- Start level 17 HTTP root »
= o= o=, =, Al
@-‘1 Bt byl ook Mo bundle selected
N £ W
L » » il 4 Select one or more bundles in the main view to view detail
Systern Bundle Loy Service Ch Service Console iR atEn
® ®© W B
b X i
util Crirnzon XML lik JSDK ik bundlerepository
-~ . P g
A ey .fs‘; & b. .-g‘g
Device Manager Uzer Adrin HTTR Server Py Cotritnancs
- = o~ o~
b e o b
oy ol g = b
Log Commancls Chi Commands TTY Conzole Telnet Console T
“
= = :i-.’:-. :'f—_-‘:. :‘f:-.“: b Bundle Repository Manifeg‘t. Closure | Services || Packages | Log

Friopflerfish 05Gi framework, wersion 3.3.3
Copyright Z2002-Z2004 Enopflerfish. All Rights PReserwed.

See http: ffwuw_knopflerfish.org for more information.
Type 'help' for help or 'alias' for a list of common commands

=

>

Figure 2: The Knoperfish OSGi Desktop

Congratulations! You successfully installed Knopflerfish and started up the framework
for the first time. You will find more information about Knopflerfish startup options and
the Knopflerfish Desktop on the KF website: http://www.knopfletfish.org.

The Knopflerfish Desktop let's you manage the KF framework. It is the visible part of
the management agent for your framework. For example, you can install new bundles, start
and stop them, update bundles or uninstall them.

3.1

3.2

4 Creating your First Bundle

Creating your First Bundle

In this chapter, you will create your first OSGi bundle and deploy it in the Knopflerfish
framework. We assume that you have access to an IDE, such as Eclipse.

In OSGi programming, the elements that can be installed in a framework are called
bundles. Bundles are simply jar files, that typically contain the Java class files of the service
interfaces, their implementation and some more meta information in a META-
INF/manifest.mf file. Services are Java interfaces and once your bundle registered a servcie
with the OSGi framework, other bundles may use your “published” service.

Your first bundle will simply create a background thread that prints out “Hello World”
every second.

Create a New Project for your First Bundle

Open your IDE, such as Eclipse, and create a new Java Project. Name it simplebundle.
Create separate folders for your source code and the generated classes (I recommend strc
and classes). Make sure that you import the framework.jar file in your Java build path.
Otherwise, you will not be able to access the OSGi classes and interfaces provided by
Knopflerfish.

Create the manifest.mf File

Next, add a META-INF directory to your project. This folder will contain the manifest.mf
file that describes your bundle. It is later used by the framework to get information about
you bundle and to deploy it successtully.

Add the following text to your manifest.mf file:

Mani fest-Version: 1.0

3.3

Create the manifest.mf File 5

Bundl e- Nane: si npl ebundl e

Bundl e- Synbol i cNane: si npl ebundl e

Bundl e- Version: 1.0.0

Bundl e- Descri ption: Deno Bundl e

Bundl e- Vendor: Vodafone Pil ot entw ckl ung GrbH
Bundl e- Activator: de. vpe. sinpl ebundl e.inpl.Activator
Bundl e- Cat egory: exanpl e

| mpor t - Package: org. osgi . franmework

The most important properties here are Bundle-Activator and Import-Package. Bundle-
Activator tells the framework which class is your Activator class, this is a kind of “main”
class for your bundle. In our example, we will later create a
de.vpe.simplebundle.impl. Activator class and this class will be launched by the framework
once we deploy and start the bundle.

The Import-Package property tells the framework that our bundle needs to have access
to all classes contained in the org.osgi.framework package. Generally, every bundle that you
create needs to have access to the classes of the OSGi framework.

Create an Ant Build File

We will use Ant to build the project. Create a build.xml file in the top of your directory
structure and add the following targets:

<?xm version="1.0"?>
<proj ect name="si npl ebundl e" default="all">
<target nane="all" depends="init,conpile,jar"/>
<target name="init">
<mkdir dir="./classes"/>

<mkdir dir="./build"/>
</target>

<target name="conpile">

<javac destdir = "./cl asses"
debug = "on"
srcdir ="./src"
>
</ j avac>
</target>
<target nane="jar">
<jar basedir = "./classes"
jarfile = "./build/sinplebundle.jar"
conpress = "true"
includes = "**/*"
mani fest = "./nmeta-inf/MANI FEST. MF"
/>
</target>

<t arget nane="cl ean">
<delete dir = "./cl asses"/>
<delete dir = "./build"/>

3.4

6 Creating your First Bundle

</target>

</ pr oj ect >

You can now test run the build.xml file. In Eclipse, simply right-click on the build.xml
file and choose Run>Ant Build. The build file should complete successfully. If not, please
check your directory structure and make changes where necessary.

Create the Activator Class

Most bundles do have an Activator class, specified in the bundle's manifest.mf file. The
Activator class implements the BundleActivator interface. This interface requires the
implementation of two methods, start() and stop(), which are used by the framework to
manage your bundle.

Create a de.vpe.simplebundle.impl package. In OSGi programming, you typically
separate the service interfaces from their inplementation. As our first bundle will not
register any services, our de.vpe.simplebundle package will be empty. The impl sub-
package will store the Activator class, that starts our bundle.

Now create a class called Activator that implements the BundleActivator interface:

package de. vpe. si npl ebundl e. i npl ;

i mport org.osgi.framework. Bundl eActi vat or;
i mport org.osgi.framework. Bundl eCont ext ;
/**

* @ut hor Sven Hai ges | sven. hai ges@odaf one. com
*/
public class Activator inplements Bundl eActivator {

public static Bundl eContext bc = null;

public void start(Bundl eContext bc) throws Exception {
Activator.bc = bc;

}

public void stop(Bundl eContext bc) throws Exception {
Activator.bc = null;
}

Notice that the start() and stop() methods receive an BundleContext object. You should
always store this object once you get it and set the reference back to null when the bundle
is stopped. That way, the Garbage Collector can do its work and free unused resources.

Next, we create a Thread subclass, that will print out “Hello World” every five seconds.

package de. vpe. si npl ebundl e. i npl ;

/**

* @ut hor Sven Hai ges | sven. hai ges@odaf one. com

3.5

Create the Activator Class 7

*/
public class Hell owrl| dThread extends Thread {
private bool ean running = true;

public Hell oWorl dThread() {

}

public void run() {
while (running) {
Systemout.println("Hello Wrld!");

try {

Thr ead. sl eep(5000) ;
} catch (InterruptedException e) {

System out . printl n("Hell owbrl dThread ERROR " + e);
}

}
}

public void stopThread() {
this.running = fal se;
}

}

Finally, we have to create a new thread while the bundle is started (in the start() method)
and we have to stop the thread once the bundle is stopped. We also add some debugging
code to see when the bundle ist started and stopped:

public class Activator inplenents Bundl eActivator {
public static Bundl eContext bc = null;
private Hel |l oWworl dThread thread = null

public void start(BundIerntext bc) throws Exceptlon {
Syst em out . pr|ntln(Si npl eBundl e starting...");
Acti vat or. bc bc;
this.thread = new Hel | oWor| dThr ead() ;
this.thread.start();

}

public void stop(Bundl eContext bc) throws Exception {
System out. println("Si npl eBundl e stopping...");
this.thread. stopThread();
this.thread.join();
Activator.bc = null;

Build and Install your First Bundle

Again, build the project using the build.xml file. You should now see a simplebundle.jar file
in the ./build directory. Open Knopflerfish and choose File>Open Bundle. Choose the

8 Creating your First Bundle

simplebundle.jar file and install the bundle. The bundle is automatically activated and you
should see a new icon in the upper left window. Every five seconds, the bundle prints out a
new Hello World. Try to start and stop the bundle using the buttons of the Knopflerfish
OSGi Desktop.

Congratulations, you just created your first bundle!

Knopflerfish 0SGi desktop (knopflerfish)
Fie Edt Bundes view Help

=N R Start level !7 HTTE ract Bt
ﬁs'a :"@:. :"c:s; ::gs; #20 simplebundle
oy 7 Location file:D:\upelfh furtwangen
System Buncle Log Service M Service Console i
. State resclved
W L S L] KT
L4 N startlevel 1
util Crimson KL it STl Vodafane GrbH
Eundle-version 1.0
bas el e e i I
gy 2 Iy oy Bundle-Catego example
T3 <5 <5 Y gory P ‘
Device Manager User dmin HITP Server P Commands: o &
Bundle-SymbolicName simplebundle
e P Y e Ant-version Apache Ant1.6.1
L 1Y <y "Cy
'- . 1 Created-By 1.4,2_02-b08 (Sun Micrasysterns Inc.)
Log Cammends M Commands TTV Consale Telnet Consdle I —
- e by bl Al
» 1Y 7Y Ty Demo Bundle
Deskion HTTE roat Tray Ican Manager PN Tray gr0sgiframevark
e
s
= “ M
simplebundle

Bundle Repostory | manifest | Closure | Services | Packages | Log |

>

- [stdous] SinpleBundle starting. ..
[stdout] Hello World!

[stdout] Hello World!

[stdout] Hello World!

[stdout] Hello World!

[stdous] Hello World!

[stdout] SiwpleBundle stopping. ..
[stdout] SiupleBundls starcing. ..
[stdout] Hello World!

[stdout] Hello World!

[stdout] SimpleBundle stopping. .

Figure 3: KE Desktop after installing the Hello World Bundle

4.1

Creating your First Service 9

Creating your First Service

This chapter will help you to create your first service. Again, we need to create a bundle,
but this time our interface package will not be empty. It will contain the service interface,
which is a simple Java interface.

First, copy your SimpleBundle project and name it DateBundle. The service that you will
create will format a given Date object and return the formatted date. Make sure that you

change the build.xml file and the manifest.mf file to meet the names of the newly created
bundle.

Update the manifest.mf File

There is one small change in the manifestmf file: we have to add an Export-Package
property. Otherwise, other services will later not be able to retrieve the service interface
and thus will not be able to use our service.

Make sure that your manifest.mf file for the new project looks like this:

Mani f est-Version: 1.0

Bundl e- Nane: firstservice

Bundl e- Synmbol i cName: firstservice

Bundl e- Version: 1.0.0

Bundl e- Descri pti on: Deno Bundl e

Bundl e- Vendor: Vodafone Pil ot entw ckl ung GrbH

Bundl e- Activator: de.vpe.firstservice.inpl.Activator
Bundl e- Cat egory: exanpl e

| mpor t - Package: org. osgi.franmework

Export-Package: de.vpe.firstservice

4.2

4.3

4.4

10 Creating your First Service

Create the Service Interface

Notice, that we also renamed the packages to de.vpe.firstservice. Create a Java interface
called FirstService:

package de.vpe.firstservice;
import java.util. Date;

public interface FirstService {
public String get FormattedDat e(Date date);

Create the Service Implementation

Next, we create the FirstService Implementation in the impl subpackage:

package de.vpe.firstservice.inpl;

i mport java.text. Dat eFor nat ;
i mport java.util. Date;

i mport de.vpe.firstservice.FirstService;
public class FirstServicelnpl inplenents FirstService {
public String get FormattedDat e(Date date) {

return DateFornmat. get Dat el nst ance(Dat eFor mat . SHORT) . f or mat
(date);
}

The implementation of our service interface is rather easy, but this is OK for now. The
implementation simply returns a formatted date in short style.

Create an Activator that Registers the Service

Finally we have to register our service. This will be achieved in the start() method of our
Activator class. We first create a service implementation and then register this service
under the name of the service interface. All registering operations are done via methods in
the BundleContext object. This object is the glue between our bundle and the framework.

package de.vpe.firstservice.inpl;
i mport java.util.Hashtabl e;

i mport org.osgi.framework. Bundl eActi vat or
i mport org.osgi.franmework. Bundl eCont ext ;

4.5

Create an Activator that Registers the Service 11

i mport org.osgi.franmework. Const ant s;
i mport org.osgi.framework. Servi ceRegi stration;

i mport de.vpe.firstservice. FirstService;
public class Activator inplenents Bundl eActivator {
public static Bundl eContext bc = null;

public void start(Bundl eContext bc) throws Exception {
System out . pri ntl n(bc. get Bundl e() get Header s() . get
(Const ant s. BUNDLE NAI\/E) + " starting...");
Activator. bc bc;
FirstService service = new FirstServicel npl ();
Servi ceRegi stration registrati on = bc.regi sterService(
Fi rst Servi ce. cl ass. get Nane(), service, new Hashtable());
System out.println("Service registered: FirstService");
}

public void stop(Bundl eContext bc) throws Exception {
System out . printl n(bc. get Bundl e() get Header s() . get
(Constants. BUNDLE NAME) + " stopping...");
Activator.bc = null;
}

}

The registerService method of the BundleContext receives three parameters: the first
parameter is the name of the service interface. The second is the service implementation.
The third parameter can be used to supply additional information about the setrvice as
key/value paits.

Build and Install the Service Bundle

Again, build the bundle using the build.xml file. Make sure that you changed the name of
the bundle jar file to something like firstservicebundle.jar. Install it using the KF Desktop.
You should see the debug messages that you added to the code.

The next bundle that you will create will use the service that you just registered.

51

12 Using other Services

Using other Services

Copy the FirstService project and rename it to FirstServiceUser. Don't forget to rename
the file names and property names in the build.xml file, the manifest.mf file and also
change the package names of the new project.

The bundle that you will create will only use services, so again, we will have an empty
service package. The only class that you have to create for this bundle is a new Activator
class. This Activator will look up the FirstService and use it.

Update the manifest.mf File

Your manifest for the FirstService user bundle should look like this:

Manifest-Version: 1.0

Bundle-Name: firstserviceuser

Bundle-SymbolicName: firstserviceuser

Bundle-Version: 1.0.0

Bundle-Description: Demo Bundle

Bundle-Vendor: Vodafone Pilotentwicklung GmbH
Bundle-Activator: de.vpe.firstserviceuser.impl.Activator
Bundle-Category: example

Import-Package: org.osgi.framework,de.vpe.firstservice

Notice that we added a comma and a new package name to the Import-Package header.
We now declare, that our bundle needs to have access to the de.vpe.firstservice package. A
framework will always check that this package is available to the bundle before the
Activator is started.

5.2

Retrieve a Service —the bad way 13

Retrieve a Service — the bad way

Whenever you retrieve a service, you must understand that an OSGi Framework is a quite
dynamic place where services might be available or not. It is very important to double-
check that you really retrieved a valid service implementation and not null, whenever you
get a service. Soon after using the service, you should also “unget” it, which means that the
framework is informed that you do not use the service any longer.

Our first example, the easiest one but also the worst regarding code quality, retrieves the
FirstService from the BundleContext and uses the service. We will show you later why this
code is problematic in several ways.

package de.vpe.firstserviceuser.inpl;
import java.util. Date;

i mport org.osgi.franmework. Bundl eActi vat or

i mport org.osgi.framework. Bundl eCont ext ;

i mport org.osgi.franmework. Const ant s;

i mport org.osgi.framework. Servi ceRef er ence;

i mport de.vpe.firstservice. FirstService;
public class Activator inplenents Bundl eActivator {
public static Bundl eContext bc = null;

public void start(Bundl eContext bc) throws Exception {
System out . printl n(bc. get Bundl e() . get Header s() . get (
Const ant s. BUNDLE NAME)
+ " starting...");
Activator.bc = bc;

Servi ceRef erence reference = bc. get Servi ceRef erence
(FirstService.class.getNane());
FirstService service = (FirstService)bc. get Service(reference);
Systemout.println("Using FirstService: formatting date: " +
servi ce. get Format t edDat e(new Date()));
bc. unget Servi ce(ref erence);
}

public void stop(Bundl eContext bc) throws Exception {
System out . printl n(bc. get Bundl e() . get Header s() . get
Const ant s. BUNDLE NANME)
+ " stopping...");
Activator.bc = null;

We first retrieve a ServiceReference from the BundleContext. The getServiceReference()
method simply asks for the name of the service interface that we would like to use. Once
we have a ServiceReference, we use the getService() method to acquire the service
implementation object, cast it to FirstService and use it.

You can now build the project and install it using the KF desktop. If your FirstService is
started, everything will be fine and you will see the debug output.

The problem is that there is no guarantee that the FirstService is actually available. Try
the following: stop both services and then first start the bundle that uses the FirstService.
You will probably get a NullPointerException, because the mehtod getServiceReference

5.3

14 Using other Services

returned null (no service was yet registered, so the framework could not give you what you
asked for).
A better solution would be to check if the return value is null:

Servi ceRef erence reference = bc. get Servi ceRef erence
(FirstService.class. get Nane());

if (reference != null)

FirstService service = (FirstService)bc. get Service(reference);

Systemout.println("Using FirstService: formatting date: " +
servi ce. get Format t edDat e(new Date()));

bc. unget Servi ce(r ef erence) ;

el se

Systemout.println("No Service available!");

This solves the problem with the NullPointerException, but: if our service is not
available at startup, we can never use this service! Somehow we should regularly check if
the service is available or not. Or even better: the framework should inform us, as soon as
a suitable service is available. You can achieve this, using ServiceListeners.

Using a ServiceListener to Dynamically Bind Services

Using the BundleContext, it is possible to register a ServiceListener with the framework.
With an optional filter object, you can exactly specify for which services you want to
receive ServiceEvents. Service events are sent out by the framework whenever a new
service registers, unregisters or modifies its properties.

The next example shows the modified start()-method code. First, a ServiceListener is
registered with the framework. The filter string is in LDAP style and tells the framework
only to send service events concerning the FirstService interface to us. Notice, that we do
not retrieve the FirstService directly in the start() method. Instead, we do a little trick and
obtain all Services that match our filter. Then, we send out ServciceRegistered events for
every service that is found (in our example, this will just be one service and thus one
ServiceEvent). Be sure to add the ServiceListener interface to you Activator. This forces
you to add a serviceChanged method (see below).

public void start(Bundl eContext bc) throws Exception

{
Systemout.println("start " + getCl ass().getNane());
Activator.bc = bc;

String filter = "(objectclass=" + FirstService.class.getNanme() + ")";
bc. addServi celLi stener(this, filter);

Servi ceRef erence references[] = bc. get Servi ceReferences(null, filter);
for (int i = 0; references !'=null & i < references.length; i++)

thi s. servi ceChanged(new Servi ceEvent (Servi ceEvent . REG STERED,

Using a ServiceListener to Dynamically Bind Services 15

references[i]));

——

The serviceChanged method will receive all ServiceEvents for FirstService service
changes. The method I implemented starts to use a service once a FirstService Registers (it
starts a thread that uses the service every second or so) and stops once the service
unregisters. If the service changes (e.g. the properties of the service changed), we stop
using the service, obtain a new reference to the service and start again.

public void servi ceChanged(Servi ceEvent event) {
switch (event.get Type()) {
case ServiceEvent . REG STERED:
| og(" Servi ceEvent . REG STERED") ;
this.service = (FirstService) Activator. bc. get Servi ce(event

. get Servi ceRef erence());
thi s. start Usi ngService();
br eak;
case Servi ceEvent. MODI FI ED:
| og(" Servi ceEvent .. MODI FI ED r ecei ved") ;
t hi s. st opUsi ngServi ce();
this.service = (FirstService) Activator. bc. get Servi ce(event

. get Servi ceRef erence());
t hi s. startUsi ngService();
br eak;
case Servi ceEvent . UNREG STERI NG
| og(" Servi ceEvent . UNREG STERI NG') ;
t hi s. st opUsi ngSer vi ce();
br eak;

}

private void stopUsingService() {
this.thread. stopThread();

try {
this.thread.join();

} catch (InterruptedException e) {
e. printStackTrace();
}

this.service = null;

}
private void startUsingService() {

this.thread = new Servi ceUser Thread(this. service);
this.thread.start();

}

private void |l og(String nmessage) {
System out . printl n(Activator. bc. get Bundl e() . get Header s() . get (

Const ant s. BUNDLE_NAME)

+ ": " + nessage);

}

Again, you can now build your project and install the bundle jar file (or update it). You
will see that our bundle starts to use the FirstService as soon as it is available. Try to stop
the FirstService, while the bundle is active. You will see that the bundle stops using the

16 Using other Services

service and waits until it becomes again available. Although the ServiceUserThread class is
just a basic thread, here is the code for it.

public class ServiceUser Thread extends Thread {
private FirstService service = null

private bool ean running = true;

public ServiceUser Thread(FirstService service) {
this.service = service;

}

public void run() {
Date date = null;
String formattedDate = null;

while (running) {
date = new Date();

try {

formattedDate = this. service. get FormattedDat e(date);
} catch (RuntineException e) {

Syst em out

.println("RuntimeException occured during service usage:

+ e);

}

System out . printl n("Servi ceUser Thread: converted date has

val ue:

+ formattedDate);
try {

Thr ead. sl eep(1000) ;
} catch (InterruptedException e) {

System out . printl n("Servi ceUser Thread ERROR. " + e);
}

}

}

public void stopThread() {
this.running = fal se;
}

}

As you have seen, there is pretty much code to write to be able to dynamically start and
stop using other services. Fortunately, there is a utility class available, that helps you to
solve this problem. The ServiceTracker class is available for you to monitor services. We
will now show you how to use the ServiceTracker.

5.4

Using a ServiceTracker to track Services 17

Using a ServiceTracker to track Services

A ServiceTracker object automatically tracks all ServiceEvents for a specified service and
gives you the possibility to customize what should happen, once a servcie appeards or
disappears. To enable this customization, you have to implement a
ServiceTrackerCustomizer interface and provide it to a ServiceTracker object.

The following code is the updated version of the Activator's start() method. You will
see, that most code actually was moved out of this Activator because we now use a
ServiceTracker.

public void start (Bundl eContext bc) throws Exception {
System out . printl n(bc. get Bundl e() . get Header s() . get (
Const ant s. BUNDLE _NAME)
+ " starting...");
Activator.bc = bc;

custom zer = new MyServi ceTracker Cust om zer (bc);

tracker = new ServiceTracker (bc, FirstService.class.getNane(),
cust om zer);

tracker. open();
}

Now, we take a look at the MyServiceTrackerCustomizer class, that implements the
ServiceTrackerCustomizer interface:

public class M/ServiceTracker Custoni zer inplenments
Servi ceTr acker Cust om zer {

private Servi ceUser Thread thread = nul |
privat e Bundl eCont ext bc;

public MyServi ceTracker Cust om zer (Bundl eCont ext bc) {
this.bc = bc;
}

public Cbj ect addi ngServi ce(Servi ceReference reference) {

FirstService service = (FirstService) bc.getService(reference);
if (this.thread == null) {

this.thread = new ServiceUser Thread(service);

this.thread. start();

return service,;
} else

return service;

}

public void nodifiedService(ServiceReference reference, Object
servi ce(vj ect) {
this.thread. stopThread();
try {
this.thread.join();
} catch (InterruptedException e) {
e.printStackTrace();

FirstService service = (FirstService) bc.getService(reference);
this.thread = new Servi ceUser Thread(servi ce);
this.thread.start();

}

public void renmovedService(Servi ceReference reference, hject
servi ce(vj ect) {

18 Using other Services

this.thread. stopThread();

try {
this.thread.join();

} catch (InterruptedException e) {
e.printStackTrace();

this.thread = null;

The addingService method gets the service and starts a new thread if none exists. We
check if the thread is null, because only then we would like to start exactly one new thread.
It could happen that many FirstServices are registered, but even then we only want to use
one service in one thread.

The modifiedService method simply stops the execution of the thread and restarts with
the new service. To extend the usefulness, we could actually check if the service that
changed is really the service that we currently use. Only if our service changed, there is a
need to restart.

Finally, the removedService method simply stops the execution of the thread. The
service is not used any more, after the method returns.

List of References

Gravity: Richard S. Hall, OSGi and Gravity Service Binder Tutorial, 2004, http://oscat-
osgi.sourceforge.net/tutorial/

KF: Erik Wistrand, Develop OSGi Bundles, 2004, http:/ /www.knopfletfish.org/programming.html

OSGi Intro: OSGi Alliance, OSGi Technology, 2004,
http:/ /www.osgi.otg/osgi_technology/index.asp?section=2

OSGi Platform: OSGi Initiative, OSGi Setvice Platform R3, March 2004, http://www.osgi.otg

X

