
mike@r3.com
Mike Hearn

Cords and gumballs

mailto:mike@plan99.net

Who what why huh?!

Who am I?

Kotlin early adopter: first patch to Kotlin website Sept 2014,

introduced to my first product Feb 2015.

4

Lead Platform Engineer on Corda

Senior engineer at Google (7.5 yrs)

Bitcoin

Early user (2009, four months after release)

Long term developer (2010-2015)

Wrote bitcoinj, widely used Java library

What does Corda do?

Improve how businesses work together …

5

… by replacing message-oriented workflows …

… with a shared, world wide, distributed database …

... that nobody owns and which has no administrators.

Applications to finance, healthcare, oil & gas, cargo
shipping, for Bitcoin style consumer e-cash, and supply
chain integrity, and maybe more stuff we didn’t think of
yet.

Who + what are we?

• Precise nature of what Corda is? 
Not a topic for today!

• Quite interesting computer science though: 

– Bitcoin inspired peer to peer protocol

– Lots of cryptography. Intel SGX memory encryption and hardware security.

– Serialised coroutines to implement business processes

– Fully deterministic version of the JVM

– Sophisticated identity infrastructure

– Large type safe API for solving business coordination problems

– Open source: corda.net

6

Corda and Kotlin

Vital stats

117,708 lines of Kotlin

25+ developers

471 Corda graduates

9,760 commits

2 years old tomorrow!

94.1%
Kotlin

5.2%
Java

8

Why Kotlin?

• Started using Kotlin before 1.0 shipped.

• Very risky move!

• But a calculated risk. It worked.

• No regrets. Would do it again.

• Better devs, happier devs, easier to hire.

9

Things that rocked

• Everyone loves Kotlin!

• Mainstream acceptance came fast!

• Some new hires considered us specifically because
we used Kotlin.

• Bank developers often use it too, although it’s optional

• Dokka has a JavaDoc skin!! 😍

• We use DSLs. We use TornadoFX.

10

Unique challenges

• Creating a large Java API under huge time pressure

• Kotlin’s Java interop is very good  
(… but not perfect)

• Very early adopters

• We use Quasar for Java compatible continuations

• None of the team knew Kotlin before (except me)

11

The catch?

• First 18 months were a fight against IDE exceptions.

• Making perfect Java API still has caveats.

• IntelliJ is amazing but most team members don’t know the best
tricks!

• People trip on advanced generics issues ~once per week

• We can’t use Kotlin continuations because we must support Java.  
We can’t use Kotlin serialisation for the same reason. 
We can’t use Kotlin/Native for the same reason. 
 
Thus, most big new JetBrains efforts don’t help us.

12

Getting specific

Example mistakes

• Missing @JvmOverloads annotations.

• Missing @JvmStatic annotations.

• Companion objects polluting the API.

• @param instead of @property in Kdocs

• Forgetting to make stuff private.

• Can’t suppress internal packages in Dokka yet.

• What does internal visibility do, anyway?

14

Example issues with generics

15

No raw types, so no late
generification of types

Many developers rely
heavily on type inference
to avoid dealing with
complex generics cases

What I really really want

Upgrade requests

• Public API mode, where omitting types/javadocs/visibility, *Kt
classes are errors for public API packages.

• Java 8 bytecode support (e.g. default methods)

• Intentions for missing @JvmOverloads, @JvmStatic

• Full Jigsaw support

• Someone full time on Dokka for a while?

• More robust type inference (will tolerate some slowness to get this)

17

Future areas of language risk

• Concepts available for borrowing now nearly
exhausted?

• Will Kotlin community fracture like Scala did?

• Kotlin/Java incompatibilities growing as Kotlin
accelerates ahead (e.g. modules)

• Community poorly reimplementing OpenJDK  
(e.g. for /Native and /JS)?

18

Gumball
And now for something completely different…

Project goals
Compile Java/Kotlin apps to small native executables

By embedding a JVM

Simplified distribution for command line tools.

Provide some competition for Golang in the command line tools space

Be easy to use

Avian JVM
Embedded Java

 Cross platform
 Simple JIT compiler
 Generational GC
 Supports AOT compilation
 Can statically link to native
 Can use OpenJDK library
 Can embed SWT for native GUI

Gumball
Embedded Java for all

 Simple automation utility
 Converts über-JAR to binary object
 Customises JVM bootstrap
 Links to single native image
 Gumball can gumball itself

Limitations and comparisons

Mac only for now (easy to do Linux/Windows)
One or two app-compat issues to fix
ProGuard is really slow
AOT mode still to do
One-click option for SWT would be useful

Still to-do

https://github.com/mikehearn/gumball

Comparison

vs Kotlin/Native - Gumball’s just Java: no pointers, C interop
awkward

vs SubstrateVM (Graal) - similar sized binaries, native-image tool
much faster, but SVM is proprietary

Help wanted!

https://github.com/mikehearn/gumball

#kotlinconf17

mike@r3.com

mike@plan99.net

https://blog.plan99.net/

Mike Hearn

Thank you!

mailto:mike@r3.com
mailto:mike@plan99.net

