
@NeilPower
Neil Power

Kickstarting Kotlin
Culture: The Journey
from Java to Kotlin

Neil Power

@NeilPower

Software Developer

Speakers

I was an Android Developer at Hootsuite from 2015-2017.

Recently switched to Hootsuite’s Developer Products team,
building out the Hootsuite Developer Platform and
experimenting with Kotlin Backend Services.

This talk is about our experience adopting Kotlin at Hootsuite. Based on the lessons we
learned, we want to share our story so others can accelerate their adoption. We are
growing Kotlin culture at Hootsuite and facilitating that growth in the community at large.

The core of our story is about empowering other individuals and companies to learn from
our experiences and turn to the future of Kotlin in their organization.

Introduction

Background

Hootsuite
Mobile

@KotlinConf

● Experimentation

○ Hootsuite was a fairly early adopter of Kotlin in production. Great

opportunity to share the lessons we learned in that process.

Why am I here?

● Experimentation

○ Hootsuite was a fairly early adopter of Kotlin in production. Great

opportunity to share the lessons we learned in that process.

● Work out loud

○ Work passionately, know that what you're doing will be valuable to

someone, and strive to share what you're working on with those around

you.

Why am I here?

We have a core team focussed on library driven development and being able to ‘slice’ our

app into verticals. These verticals are worked on by other teams around the company.

How We Work

In this dependency graph, each node is a repository that one or more teams contributes to

and maintains.

How we Work

● Unofficial Android Language

Potential Risks of Kotlin

● Unofficial Android Language

● The team learning a new language

Potential Risks of Kotlin

● Unofficial Android Language

● The team learning a new language

● Increased build times

Potential Risks of Kotlin

● Unofficial Android Language

● The team learning a new language

● Increased build times

● Stability of our CI Pipeline

Potential Risks of Kotlin

● Unofficial Android Language

● The team learning a new language

● Increased build times

● Stability of our CI Pipeline

● IDE Tooling support

Potential Risks of Kotlin

● Unofficial Android Language

● The team learning a new language

● Increased build times

● Stability of our CI Pipeline

● IDE Tooling support

● Hiring Considerations

Potential Risks of Kotlin

The First Line of Kotlin

● February 2016

○ A developer who had participated in the Scala experiment at

Hootsuite took notice of Kotlin and suggested trying it at Hootsuite.

○ He shared Jake Wharton’s now famous “Using Project Kotlin for

Android” proposal with the team.

First Exposure to Kotlin

● March 2016

○ Not everyone was yet convinced.

○ More evidence weighed and analyzed, including “Talking Kotlin with

Hadi Hariri” on the Fragmented Podcast.

○ Core Android manager, Simon Tse, created a sample app to test

Kotlin.

First Exposure to Kotlin

● April 2016

○ Our director, Paul Cowles, encouraged us to keep exploring

○ Simon converted the first POJO data class to Kotlin.

First Exposure to Kotlin

The First Commit

Diving In

● Great exercises to get started.

● Each developer on the team took the Koans home.

● We shared solutions and challenges with the rest of

the team.

Kotlin Koans

override fun onCreate(savedInstanceState: Bundle?) { 
 super.onCreate(savedInstanceState) 
 setContentView(R.layout.activity_main) 
 val toolbar: Toolbar = findViewById(R.id.toolbar) as Toolbar 
 setSupportActionBar(toolbar) 
 if (savedInstanceState != null) { 
 query = savedInstanceState.getParcelable(STATE_QUERY) 
 }

}

Java with Kotlin Syntax

● Reading the reference docs from https://kotlinlang.org/

● Experimentation with Kotlin features

● Informal knowledge sharing

Getting More Comfortable

https://kotlinlang.org/

override fun onCreate(savedInstanceState: Bundle?) { 
 super.onCreate(savedInstanceState) 
 setContentView(R.layout.activity_main) 
 setSupportActionBar(toolbar) // Synthetic Import 
 savedInstanceState?.let { 
 query = it.getParcelable(STATE_QUERY) 
 } 
}

Getting More Comfortable

override fun onCreate(savedInstanceState: Bundle?) { 
 super.onCreate(savedInstanceState) 
 setContentView(R.layout.activity_main) 
 setSupportActionBar(toolbar) // Synthetic Import 
 savedInstanceState?.let { 
 query = it.getParcelable(STATE_QUERY) 
 } 
}

Getting More Comfortable

override fun onCreate(savedInstanceState: Bundle?) { 
 super.onCreate(savedInstanceState) 
 setContentView(R.layout.activity_main) 
 setSupportActionBar(toolbar) // Synthetic Import 
 savedInstanceState?.let { 
 query = it.getParcelable(STATE_QUERY) 
 } 
}

Getting More Comfortable

Love at First Compile

data class Query( 
 var primary: List<String>? = null, 
 var secondary: List<List<String>>? = null, 
 var exclusionary: List<String>? = null, 
 var tweetTypes: TweetType? = TweetType.ALL, 
 var excludedTypes: ExcludedType? = ExcludedType(false, false), 
 var sentiment: Sentiment? = Sentiment(false, false, false), 
 var engagement: Engagement? = null, 
 var language: String? = null, 
 var location: Location? = null)

Data Classes

Nullable Types

val sortedEntities = entities?.urls 
 .orEmpty() 
 .filter { url -> !isQuotedURL(url, quotedStatus) }  
 .mapNotNull { url -> Tag(referenceId = url.url) }  
 .sortedBy(Tag::offset)

Rich Collections API

internal fun <T> likePost( 
 postComplete: PostComplete,  
 socialProfileId: Long,  
 apiLikePost: () -> Observable<T>): Observable<Int>

First Class Functions

Idiomatic Kotlin

(messageTags 
 .orEmpty() 
 .asSequence() 
 .zip(generateSequence { TagLocation.MESSAGE }) +

storyTags 
 .orEmpty() 
 .asSequence() 
 .zip(generateSequence { TagLocation.STORY })) 
.mapNotNull { (textTag, tagLocation) -> 
 Tag(referenceId = textTag.id ?: return@mapNotNull null) 
}.toList()

Zipping Infinite Sequences

inline fun <reified T> Intent.getNotificationList(key: String):  
 List<Notification> where T : Notification, T : Parcelable =  
 this  
 .getParcelableArrayListExtra<T>(key) 
 .orEmpty().map { it as Notification }

Reified Inline Functions

The First Kotlin Libraries

● We decided to write a new feature in Kotlin.

● Should have enough technical complexity to test Kotlin.

● Should be decoupled from the main code base.

First Kotlin Feature

● First Library >90% Kotlin

● Interesting Technical Components

○ Job Queue

○ Persistence

○ API calls

○ Custom Views

Compose Feedback

First 100% Kotlin Library

● Twitter Search Query Builder

● Started >90% Kotlin, first to 100%

● Challenges

○ Issues with Dagger + Kapt

Query Builder

● Twitter Search Query Builder

● Started >90% Kotlin, first to 100%

● Challenges

○ Issues with Dagger + Kapt

○ Integration with ANTLR

Query Builder

● Twitter Search Query Builder

● Started >90% Kotlin, first to 100%

● Challenges

○ Issues with Dagger + Kapt

○ Integration with ANTLR

○ Communication with AWS Lambda

Query Builder

● Isolated Experiment, away from the main app.

● Lower risk for customers

● Extracting into a library was great for mitigating our

uncertainty with Kotlin.

○ Faster Build Cycle

○ Testing in Isolation

Query Builder

● We work in sprints with retrospectives.

○ What is working?

○ What’s not working?

Kotlin Love from the Team

Kotlin Love from the Team

Growing Kotlin Culture

● Kotlin Koans were a great start.

● Kotlin started on the core team, feature teams still on Java.

● How could we continue to grow Kotlin at Hootsuite?

○ Start to develop Kotlin standards.

○ Elevate Kotlin knowledge on the team.

○ Share lessons learned from the community.

Evangelizing Kotlin

“Collective action is a wonderful thing. [People] getting together to have a conversation

about the things they care about, with the aim to do something positive for themselves and

their community.  

How can this collective action happen inside your organization? At Hootsuite, the answer

is Guilds.” - Noel Pullen

What are Guilds?

● The Solution

○ Kotlin Guild

Evangelizing Kotlin

● The Solution

○ Kotlin Guild

○ Kotlin Book Club

Evangelizing Kotlin

● The Solution

○ Kotlin Guild

○ Kotlin Book Club

○ Vancouver Kotlin Meetup Group

Evangelizing Kotlin

Kotlin Guild

Kotlin Guild

● Purpose

○ Sharing Best Practices

○ Discussing Interesting Articles/Videos

○ Creating a Unified Kotlin Style at Hootsuite

Kotlin Guild

● Format

○ Bi-Weekly Meetings

○ Opt-In

○ Shared Agenda

○ Company Wide

Kotlin Guild

KotlinConf Announced

KotlinConf Announced

Sequences?

Something New

● Encountered Sequences through the guild.

○ A first for the whole team. ?
!

Sequences

listOf(1, 2) 
.asSequence() 
.map { print("map "); it * it } 
.filter { print("filter "); it % 2 == 0 } 
.toList()

Unlazy Expectations

listOf(1, 2) 
.asSequence() 
.map { print("map "); it * it } 
.filter { print("filter "); it % 2 == 0 } 
.toList()

Expected: map map filter filter

Lazy Sequence Operations

listOf(1, 2) 
.asSequence() 
.map { print("map "); it * it } 
.filter { print("filter "); it % 2 == 0 } 
.toList()

Expected: map map filter filter

Actual: map filter map filter

Structured Learning

● What?

○ A more structured time to learn Kotlin.

○ Using reference material, an hour long meeting every 2 weeks with personal study

between meetings.

Kotlin Book Club

● Why?

○ Increase Developer Engagement with Kotlin

Kotlin Book Club

● Why?

○ Increase Developer Engagement with Kotlin

○ Accelerate Learning by learning together

Kotlin Book Club

● Why?

○ Increase Developer Engagement with Kotlin

○ Accelerate Learning by learning together

○ Find the next Sequences

Kotlin Book Club

● Kotlin in Action

○ One chapter a session.

○ Round Table Discussion.

○ Exercises based on Book Material.

Kotlin Book Club

● Pragmatic

○ “Kotlin is a practical language designed to solve real-world problems.”

Kotlin in Action

● Pragmatic

○ “Kotlin is a practical language designed to solve real-world problems.”

● Concise

○ “The syntax clearly expresses the intent of the code you read.”

Kotlin in Action

● Pragmatic

○ “Kotlin is a practical language designed to solve real-world problems.”

● Concise

○ “The syntax clearly expresses the intent of the code you read.”

● Safe

○ “Language design prevents certain types of errors in a program.”

Kotlin in Action

● Pragmatic

○ “Kotlin is a practical language designed to solve real-world problems.”

● Concise

○ “The syntax clearly expresses the intent of the code you read.”

● Safe

○ “Language design prevents certain types of errors in a program.”

● Interoperable

○ “Regardless of the kind of APIs, you can work with them from Kotlin.”

Kotlin in Action

Nothing is Everything and
Everything is Anything.

- Kotlin Book Club

● When should we use an extension function?

○ Not to simply replace passing a variable to a function.

Building Standards

● When should we use an extension function?

○ Not to simply replace passing a variable to a function.

● When should we be creating or overloading operators?

○ Infix operators are interesting but not always appropriate.

Building Standards

● When should we use an extension function?

○ Not to simply replace passing a variable to a function.

● When should we be creating or overloading operators?

○ Infix operators are interesting but not always appropriate.

● When should we be using sequences?

○ The overhead means that using lists is frequently better.

Building Standards

● When should we use an extension function?

○ Not to simply replace passing a variable to a function.

● When should we be creating or overloading operators?

○ Infix operators are interesting but not always appropriate.

● When should we be using sequences?

○ The overhead means that using lists is frequently better.

● How should we use let/with/run/apply/also?

Building Standards

Building Standards

Library Driven Development

Decomposition

● Late 2015

○ We started to think about extracting functionality into Libraries

○ Each library is its own repository

Decomposition into Libraries

● 2016

○ New features starting to be in their own libraries

○ Tools extracted into libraries

○ The start of Kotlin

Decomposition into Libraries

● 2017

○ Many libraries (mostly Kotlin)

○ Ownership distributed across teams

Decomposition into Libraries

● What?

○ New features in their own libraries.

○ Decompose HootDroid into reusable library components.

Decomposition into Libraries

● Why?

○ Better Architecture.

■ Separating libraries forces you to consider interfaces between features and main

app.

○ Introduce Kotlin in a steady, but controlled way.

Decomposition into Libraries

Library Dependency Graph

Library Dependency Graph

Library Dependency Graph

Library Dependency Graph

● Benefits

○ Easy to make new libraries Kotlin only.

○ Easy to delegate ownership to different teams.

○ Faster builds when using precompiled modules.

Decomposition into Libraries

● Drawbacks

○ Increased overhead for project configuration.

○ Need to keep libraries versioned and in sync.

Decomposition into Libraries

Library Driven Development
Tools

Tools

● Library Driven Development creates some development overhead.

○ Who wants to manually bump versions of internal libraries?

○ At Hootsuite, we use Atlas and Peon to mitigate this overhead.

● Atlas is a command line Ruby application which determines project dependencies.

● Originally written by myself and Ben Hergert, we use it to create dependency graphs for

iOS, Android, and Scala projects.

● Atlas can visualize the graphs to help developers understand their projects better.

Atlas

● Below is our current graph

Current Graph

● Visually, Atlas will show out of date dependencies as well as mismatched dependencies.

Atlas

● What do we use Atlas for?

○ Graph building and sorting for Peon.

○ Onboarding new Android Developers.

○ Atlas graphs shown on status boards in the office.

○ Diagnose bugs in development.

Atlas

● Peon is another command line Ruby application that was written

by myself and Simon Tse.

● It takes as input, the graph data structure that Atlas outputs as

well as dependency updates you wish to apply.

● Peon then topologically sorts the graph and creates ordered pull

requests with the given changes.

Peon

Minor Version Changes

Major Graph Changes

Community Contribution

● We wanted to grow the Kotlin Culture beyond Hootsuite

● It started with the Kotlin 1.1 Event

○ Only Official Event in Canada

○ Founded the Vancouver Kotlin Meetup Group for the Event.

○ Engage with Jetbrains.

Helping to Spread Kotlin

It Begins

Getting Ready for the 1.1 Event

● Kotlin 1.1 Event

○ Talks by Hootsuite Kotlin Developers.

○ Engage with Kotlin Community.

○ First Meetup in Vancouver.

Kotlin 1.1

● Kotlin Meetup Group

○ Help grow Kotlin in Vancouver.
● Kotlin Night #1

○ Sponsored by Jetbrains

○ Talks by Hootsuite and external Kotlin

developers.
● Some people here today!

○ Thanks JetBrains for the tickets!

Kotlin Meetup Group

● Kotlin Beginners Night

○ Often requested by people new to Kotlin.

○ Introductory talks.

○ Workshops on language features.

Kotlin Meetup Group

History of Kotlin and Java at
Hootsuite

Per Sprint Contributions

Kotlin 1.1 released

First Kotlin Feature

Refactoring Java to Kotlin

Kotlin Official

Cumulative Lines of Code

Kotlin 1.1 releasedKotlin Guild Founded

Start of Book Club

Kotlin Official

Overall Lines of Code

Main App

Libraries

Kotlin 1.1 released

Kotlin Guild Founded

Start of Book Club

Kotlin Official

2016 Milestones

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-04-01 6 6 0 0 0

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-04-01 6 6 0 0 0
2016-04-15 6 6 0 0 1

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-04-01 6 6 0 0 0
2016-04-15 6 6 0 0 1
2016-05-27 9 9 0 0 2

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-04-01 6 6 0 0 0
2016-04-15 6 6 0 0 1
2016-05-27 9 9 0 0 2
2016-06-10 11 11 0 0 5

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-04-01 6 6 0 0 0
2016-04-15 6 6 0 0 1
2016-05-27 9 9 0 0 2
2016-06-10 11 11 0 0 5
2016-06-24 12 11 1 1 5

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-04-01 6 6 0 0 0
2016-04-15 6 6 0 0 1
2016-05-27 9 9 0 0 2
2016-06-10 11 11 0 0 5
2016-06-24 12 11 1 1 5
2016-07-22 13 10 2 3 6

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-04-01 6 6 0 0 0
2016-04-15 6 6 0 0 1
2016-05-27 9 9 0 0 2
2016-06-10 11 11 0 0 5
2016-06-24 12 11 1 1 5
2016-07-22 13 10 2 3 6
2016-08-05 14 11 1 3 7

Change in Libraries over Time

For all sad words of tongue and pen, The
saddest are these, 'I had to convert Kotlin
back to Java'.

- The Hootsuite Android Team

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-04-01 6 6 0 0
2016-04-15 6 6 0 1
2016-05-27 9 9 0 2
2016-06-10 11 11 0 5
2016-06-24 12 11 1 1 5
2016-07-22 13 10 2 3 6
2016-08-05 14 11 1 3 7

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-04-01 6 6 0 0
2016-04-15 6 6 0 1
2016-05-27 9 9 0 2
2016-06-10 11 11 0 5
2016-06-24 12 11 1 1 5
2016-07-22 13 10 2 3 6
2016-08-05 14 11 1 3 7
2016-09-02 15 10 2 5 8

Change in Libraries over Time

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-04-01 6 6 0 0
2016-04-15 6 6 0 1
2016-05-27 9 9 0 2
2016-06-10 11 11 0 5
2016-06-24 12 11 1 1 5
2016-07-22 13 10 2 3 6
2016-08-05 14 11 1 3 7
2016-09-02 15 10 2 5 8
2016-10-04 15 10 3 5 8

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-04-01 6 6 0 0
2016-04-15 6 6 0 1
2016-05-27 9 9 0 2
2016-06-10 11 11 0 5
2016-06-24 12 11 1 1 5
2016-07-22 13 10 2 3 6
2016-08-05 14 11 1 3 7
2016-09-02 15 10 2 5 8
2016-10-04 15 10 3 5 8
2016-10-28 16 10 3 6 10

Change in Libraries over Time

2017

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-10-28 16 10 3 6 10

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-10-28 16 10 3 6 10
2017-03-03 18 12 4 6 12

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-10-28 16 10 3 6 10
2017-03-03 18 12 4 6 12
2017-04-28 20 10 5 10 15

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-10-28 16 10 3 6 10
2017-03-03 18 12 4 6 12
2017-04-28 20 10 5 10 15
2017-06-23 20 6 9 14 18

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-10-28 16 10 3 6 10
2017-03-03 18 12 4 6 12
2017-04-28 20 10 5 10 15
2017-06-23 20 6 9 14 18
2017-07-21 20 5 10 15 18

Change in Libraries over Time

Sprint Libraries Majority Java All Kotlin Majority Kotlin Partially Kotlin
2016-10-28 16 10 3 6 10
2017-03-03 18 12 4 6 12
2017-04-28 20 10 5 10 15
2017-06-23 20 6 9 14 18
2017-07-21 20 5 10 15 18
2017-10-27 21 5 13 16 18

Change in Libraries over Time

Kotlin Official

● Kotlin had been getting a lot of press all year.

● The team at Hootsuite were very hopeful for an announcement about Kotlin.

● We had almost given up hope but...

Hopeful Developers

“We have never added a new
programming language to Android”

Stephanie Saad Cuthbertson —
director of product management for Android

Production Ready

Risks Review

● Unofficial Android Language

○ Now Official!

Mitigated Risks of Kotlin

● Increased build times.

○ Use of precompiled library modules.

Mitigated Risks of Kotlin

● Stability in our CI Pipeline.

○ Some early issues, now resolved.

Mitigated Risks of Kotlin

● IDE Tooling support

○ Android Studio and Kotlin are both JetBrains.

Mitigated Risks of Kotlin

● Hiring Considerations.

○ People have seen our blog and want to work with Kotlin.

Mitigated Risks of Kotlin

Conclusion

● Kotlin has been a boon to productivity

Conclusion

● Kotlin has been a boon to productivity

Conclusion

● Increased Developer Happiness

Conclusion

● Better Code Shipped

Conclusion

● Interoperability key to Adoption

● Incremental addition was the strategy for adoption.

Conclusion

● Library Driven Development

○ Decomposition of our app into Kotlin libraries.

Conclusion

● Grown and Spread Kotlin Culture

○ Kotlin Guild

○ Kotlin Book Club

○ Meetup Group

Conclusion

Thank you!

Software Developer
@NeilPower

Neil Power

println(null
.toString()
.filter { it != 'l' }
.map { if (it == 'n') 'm' else it }
.joinToString(separator = ""))

println(3.let { 12 } + 6.run { 9 } +
9.apply { 6 } + 12.also { 3 })

Owly Plush Questions

#kotlinconf17

@NeilPower
Neil Power

Thank you!

