:(KotlinConf

Kotlin EE

Boost Your Productivity

Agenda

Introduction
Why Kotlin
Why Java EE
Kotlin EE
Live Coding
Wrap-Up

@McPringle
D

Introduction

Disclaimer

The following presentation has been approved for open audiences only. Hypersensitivity to occasional
profanity requires covering ears.

All logos, photos etc. used in this presentation are the property of their respective copyright owners and
are used here for educational purposes only. Any and all marks used throughout this presentation are
trademarks of their respective owners.

The presenter is not acting on behalf of CSS Insurance, neither as an official agent nor representative. The
views expressed are those solely of the presenter.

Marcus Fihlon disclaims all responsibility for any loss or damage which any person may suffer from reliance
on this information or any opinion, conclusion or recommendation in this presentation whether the loss or
damage is caused by any fault or negligence on the part of presenter or otherwise.

@McPringle
D

About me d@

« Software Engineer [

CSS Insurance, Open Source Software

e Agile Coach
CSS Insurance

e Lecturer
TEKO Swiss Technical College

e Speaker 0
Conferences, User Groups, Meetups

« Author (
Articles, Books

e Community Leader

Hackergarten, Java User Group Switzerland, Kotlin Swiss User Group, Voxxed Days Zirich

/S @McPringle

Coming soon*

Kotlin Web Development

Develop full stack web applications with Kotlin and React.js

Packt Publishing
ISBN 978-1-78862-031-4

*around Q2/2018 ‘
@McPringle

Buzzword Bingo

e Monolith
Bad by default!
e Microservices
Solve every problem!
e Nanoservices
Solve all other Problems!

e Docker
Just because it's cool!
e Java EE

Uncool and heavy framework for bloated monoliths!

@McPringle
D

Why Kotlin

About Kotlin

Statically typed
Object oriented
Java compatible
Easy to learn

Compiles to Java 6 Bytecode
Compiles to Java 8 Bytecode
Transpiles to JavaScript
Compiles to Native

>

@McPringle

Kotlin Syntax

fun main(args: Array<String>) {
val event = "KotlinConf"
println("Hi Sevent!")

@McPringle
D

Classes and Properties

class Person(val name: String,
val age: Int,
val company: String?) {

@McPringle
D

Classes final by default

open class Person(val name: String,
val age: Int,
val company: String?) {

@McPringle

Data classes

data class Person(val name: String,
val age: Int,
val company: String?)

val marcus = Person("Marcus", 29, null)
println(marcus) // Person(name=Marcus, age=43, company=null)

val marcusCSS = marcus.copy(company = "CSS Insurance")
println(marcusCSS) // Person(name=Marcus, age=43, company=CSS Insurance)

@McPringle

Singletons

object PersonController {
val persons = mutablelListOf<Person>()

fun save(person: Person) {
persons.add(person)

}

@McPringle

Coroutines

fun main(args: Array<String>): Unit = runBlocking {
val jobs = List(10) {
async(CommonPool) {
PriceService() .price

}

}
println(jobs.sumBy { it.await() } / 10)

@McPringle

Typesafe Builder

val page = html {
head {
title { "My Website" }
}
body {

p { "Hello KotlinConf!" }
}

@McPringle

Why Java EE

Library Management as a Service

Servlets, JSTL, EL and JSPs
WebSockets

JSF

JAX-RS

EJB lite

JTA

JPA

dependencies {

}

providedCompile "javax:javaee-api:Sjavaee_version"

Bean Validation
CDI
Interceptors
JBatch
Concurrency
JCache

@McPringle

Ready to use containers

FROM payara/micro

COPY myapplication.war /opt/payara/deployments

My Application

Application Server

Java Runtime

Operating System

changes on every build

changes frequently

changes sometimes, if not delayed

changes very infrequently

@McPringle

It's a Standard!

Ry
UL
GlassFish

| R :
\/\/ | | CI Flv WebSphere WebLogic

@McPringle

Kotlin EE

Classes final by default

buildscript {
dependencies {
classpath "org.jetbrains.kotlin:kotlin-allopen:Skotlin_version"

}

}

allOpen {
annotation('javax.ejb.Stateless"')
annotation('javax.ws.rs.Path')

b

@McPringle

Zero-Argument Constructor

buildscript {
dependencies {
classpath "org.jetbrains.kotlin:kotlin-noarg:Skotlin_version"

}
}
noArg A
annotation('javax.ws.rs.Path')
}

@McPringle
D

Live Coding

Architecture

@McPringle

Prepare the Swarm

e List all available machines
docker-machine 1s
e Create a new machine to be used as a manager node
docker-machine create -d virtualbox mgr
e Create a new machine to be used as a worker node
docker-machine create -d virtualbox node@l
e Login to the manager
docker-machine ssh mgr
e Initialize the swarm
docker swarm init --advertise-addr 192.168.99.100

@McPringle
D

Prepare the Visualizer

e Start the visualizer service
docker run -it -d -p 8080:8080 -e HOST=192.168.99.100 \
-v /var/run/docker.sock:/var/run/docker.sock \
--name visualizer dockersamples/visualizer

e Open the visualizer service in a web browser
http://192.168.99.100:8080/

@McPringle

http://192.168.99.100:8080/

Join the Swarm

e Ask the manager node for the token to join the swarm
docker swarm join-token worker

e Login to the worker node
docker-machine ssh node@l

e Join the worker to the swarm

docker swarm join --token <token> 192.168.99.100:2377

@McPringle

Verify the Swarm

e Login to the manager
docker-machine ssh mgr

e List all nodes
docker node 1s

e Show more detailed information
docker info

@McPringle
D

Create a Network

e Login to the manager

docker-machine ssh mgr
e Create a new overlay network

docker network create -d overlay kotlinconf
e List all networks

docker network 1s

@McPringle
D

Deploy Services

e Login to the manager
docker-machine ssh mgr
e Deploy the time service
docker service create --network kotlinconf \
--name timeservice mcpringle/timeservice
e Deploy the hello service
docker service create --network kotlinconf -p 8181:8080 \
--name helloservice mcpringle/helloservice
e List all services
docker service 1ls

@McPringle
D

Testing, Scaling and Maintenance

e Testing our services
http http://192.168.99.100:8181/api/hello/kotlinconf
e Scaling services up and down
docker service update --replicas 3 helloservice
e Take a node out of service
docker node update --availability drain mgr
e Take a note back into service
docker node update --availability active mgr

@McPringle
D

Wrap-up

Conclusion

With Kotlin, Java EE and Docker you get:

Easy to understand code
Fast build times
Reproducible deployments
Easy scaling of your services

You are fast and efficient because you have your focus on your business code.

You create business value!

@McPringle
D

You ever dreamed of living in Switzerland?

ey

N
©
P
e

=

@McPringle

X

Code Warriors wanted! CSS

Insurance

About you About us

e You are frighteningly awesome at what you do.

e You can perform quick and deadly tactical
strikes, as well as feats of epic badassery.
Sometimes both at the same time.

e You would rather refactor existing, mostly
working, ugly code instead of rewriting it from
scratch. OK nobody would really rather do that,
but you know it's the right and honorable thing
to do most of the time.

e You know where your towel is.

Biggest Basic Health Insurance Company
2700 Employees

300 IT Professionals

24 Scrum Teams

130 Software Developers

Flexible working times

Personal development support

Very good social benefits

6 weeks vacation

Located in Lucerne, Switzerland

Contact me: marcus.fihlon@css.ch

@McPringle
D

mailto:marcus.fihlon@css.ch
https://www.css.ch/

http://fihlon.ch/kotlinconf17
http://fihlon.ch/kotlinconf17

