You

did

WHAT?1?

What
were

you

Go on...

This is a safe place

Lessons learned
building a
build system

Cédric Beust
cedric@beust.com

VP of Engineering at Samsung SmartThings

Table of contents

1.Why? WHY?
2.\Whaaaaaat?

3.But... how?

Why? WHY?

What led to Kobalt?

- Dissatisfaction with existing build tools
- Felt the need to be in control of my build tool
- Envisioned | might encounter interesting challenges along the way

... but really

- Gave me a good excuse to write a lot of Kotlin

Whaaaaaat?

What is Kobalt?

val VERSION = “1.52”"

val jcommander = project {

name = "Jjcommander"
group = "com.beust"
artifactId = name

version = VERSION
dependenciesTest {

compile ("org.testng:testng:")

assemble {
mavenJars {}

bintray {
publish = false

Design goals

- Written 100% in Kotlin, core and build file

- A set of features coming up in the next slides

Build file

e 100% valid Kotlin code (type safe builders)

e Use Kotlin mechanisms for everything (e.g. profiles)
e Emphasis on making the build file syntax intuitive

e Maven repo information

e Reuse a lot of ideas from Gradle, invent a few new ones

Auto completion

dependencies {
pile(“org.jetbrains.kotlin:kotlin-stdlib:0.14.449"

) & dependencies ArrayList<IClasspathDependency>
v & project Project
v & providedDependencies ArrayList<IClasspathDependency>
m o provided (vararg dep: String) Unit
m & compile(vararg dep: String) Unit

Incremental tasks

kobalt:compile

Kotlin 1.1.2 compiling 182 files

Actual files that needed to be compiled: 7
kobalt:assemble

Output and 1nput hashes identical, skipping this task

Note: build tasks are opaque, individual tasks can additionally implement
incremental runs on their own

Parallel builds

PARALLEL BUILD SUCCESSFUL (25 SECONDS),
sequential build would have taken 43 seconds

Profiles

val experimental = false

val p = project {
name = 1f (experimental) "project-exp" else "project"

version = "1.3"
Enabling profiles:

S ./kobaltw —--profiles experimental assemble

Easy project dependencies

val 1libl = project {

A\Y

name = “network”

/] ..
}

val 1ib2 = project {
name = “authentication”

/] ..

val mainApp = project(libl, 1lib2) { ..

Plug-in architecture

- Statically typed
- Extension points (similar to Eclipse, IDEA)
- Clearly separates Kobalt's core from plug-ins

- Hollywood principle

Other features

- Multiple testing frameworks (TestNG, JUnit 4, JUnit 5, Spock, ...)IDEA plug-in
- Built-in Maven repo uploads

- Templates

- ASCII art and animations

- Variants and flavors

- Multi language

- Tasks inside the build file

- Self updating

- Version checks:
$./kobaltw --checkVersions
New versions found:
org.testng:testng:6.12
org.jetbrains.kotlin:kotlin-test:1.1.51
com.squareup.okhttp:okhttp:3.9.0

But... how?

Parallel builds
with DynamicGraph

Efficient parallelism for graph processing

Example project (ktor)

Topological sort

Topological sort

a2 al X
AY 7>

a2, al, x, y, b2, b1

Topological sort

a2 al X y
AY T
b2 bl .

4 ‘ ‘

(a2, a1, x,y), (b2, b1), (c2, c1, d)

Single threaded

Order of invocation:

() (o)
a2,al, x,y,b2,b1,¢c2 c1,d

Multithreaded (naive)

Two thread pools:

- One for free nodes (n threads)

- One for dependent nodes (1 thread)

Free nodes: x, y

Dependent nodes: a2, a1, b2, b1,c2,c1,d

Multithreaded (DynamicGraph)

One thread pool (n threads)
Recalculate free nodes at each completion

Launch a1, a2, x, y

(a2 completes)

(a1 completes)
Launch b2, b1

(b1 completes)
Launch c, d

(b2 completes)
Launch c2

DynamicGraph algorithm

freeNodes = graph.freeNodes

do {
schedule each free node in the thread pool

wait for the next node to complete
remove that node from the graph
freeNodes = graph.freeNodes

} while (! freeNodes.isEmpty)

Not shown: cycle handling, waiting for completion, time outs, ...

- No need for each task to explicitly wait for its dependents

DynamicGraph and DynamicGraphExecutor are completely generic

DynamicGraph in action

" Time (sec) " Thread 39 " Thread 40 " Thread 41 ” Thread 42 |
IL

Ir

I o | core I I [I
|45 | core (45) I I [[
| 45 " | ktor-locations " Il [
|45 I I | xtor-netty [[
| 45 I I " | ktor-samples |
|45 | xtor-nhosts I I [I
o n n n n

45 ktor-hosts (0)

” 45 " ktor-servlet " " || "
|45 I I I [[
” 45 || " " ” ktor-samples (0) "
” 45 || " " ” ktor-freemarker "

PARALLEL BUILD SUCCESSFUL

(68 seconds, sequential build would have taken 97 seconds)

Parallel logging in Kobalt

The problem

“How to reconcile parallel execution with sequential logging?”

VA | |
o/ / \ |
N G 2 e M O I B
[N N N/ |
Parallel build starting

IF 1l
" Building kobalt-wrapper "
L J|

kobalt-wrapper:compile

kobalt-wrapper:copyVersionForWrapper

kobalt-wrapper:assemble

[1l
" Building kobalt-plugin-api ”
L I

kobalt-plugin-api:compile

kobalt-plugin-api:copyVersionForWrapper

kobalt-plugin-api:assemble

Created modules\kobalt-plugin-api\kobaltBuild\libs\kobalt-plugin-api-1.0.90.pom

Created .\kobaltBuild\libs\kobalt-1.0.90.zi

P

” Project ”

Build status" Time

” kobalt-wrapper ”
| kobalt-plugin-api I
| kobalt I

SUCCESS | o0.06
SUCCESS | 5.39
SUCCESS | 13.05

PARALLEL BUILD SUCCESSFUL (18 SECONDS), sequential build would have

taken 25 seconds

Incremental tasks
In Kobalt

The problem

“If a task is run twice in a row, it should be skipped the second time.”
Constraints:
e Tasks are generic, not necessarily file based.
e Need to apply to the transitive closure of tasks.
The (current) solution:

e Input and output hashes.

Ad hoc polymorphism

Example: a JSON library

Provides JsonObiject

interface JsonObject {
fun todson () : String

}

And an API to manipulate these objects

fun prettyPrint(jo: JsonObject) = ...

Example: a JSON library

You provide implementations through inheritance:

class Account : JsonObject {

fun override toJson () String {

}

Cons:

- Forces inheritance.

Ties business logic to orthogonal concerns.

- What if you can’t modify Account?

Example: a JSON library

You provide implementations as extension functions:
fun Account.todson () : JsonObject = ..

Cons:
- Less transparent: prettyPrint (account.todson ())
Pros:
- Doesn’t pollute your business classes (separation of concerns)

= Poor man ad hoc polymorphism

Example: persistence

Version 1:

fun persist (person: Person) {

db.save (person.id, person)

Version 2:

interface HasId {
val id : Id

class Person : HasId {

override val id: Id get() = ...

fun persist(o: HasId) { ... }

Example: persistence

Version 3:
fun <T> persist(o: T, toId: (T) -> Id) {
db.save (o, toId (o))

// Persist a Person: easy since Person implements HasId

persist (person, { person -> person.id })

// Persist an Account: need to get an id some other way

persist (account, { account -> getAnIdForAccountSomehow (account)

}

Example: persistence
Again:

fun <T> persist(o: T, toId: (T) -> Id) {
db.save (o, toId (o))

- Detached from your classes.
- Completely generic. No Account, ho Person, no common base type. Works “for all” types.

Depends less on types, more on functions (but still statically typed!).

Ad hoc polymorphism in a nutshell

- Move away from types (nominal types), put emphasis on functions
- For Kotlin, a step toward type classes

- For more information, see KEEP #87 “Type Classes as extensions in Kotlin”
by Raul Raja

Wrapping up

Kobalt:

- http://beust.com/kobalt

- http://github.com/cbeust/kobalt

SAMSUNG
C Smartinhings

We’re hiring Kotlin Android developers!

Questions?

