
A KVM friendly IOMMU API for Linux

Operating System Research Center
Joerg Roedel

August 30, 2007 



2

Outline

1)The current state of IOMMU support

2)Features of an IOMMU

3)The Problems with the current state

4)General Design of the proposed API

5)Address Mapping Functions

6)Pagetable Sharing with NPT/EPT

7)Paravirtualized IOMMU



3

 

 

The current state of IOMMU support



4

The current state of IOMMU support

● Currently there exists the DMA mapping API

● Intended for devices not supporting the full host physical 
address range

● Provides simple functions that map host addresses to bus 
addresses

● Some sync functions to allow a implementation without 
hardware support

● Current IOMMU code only implements this API
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Abilities of an IOMMU

•Todays IOMMU support more than simple address 
remapping

•Support of full 64-bit address spaces for devices

•Each device may have its own address space with 
protection domains

•Thus support for device isolation

•[Interrupt remapping – eliminates problems with interrupt 
sharing]
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The Problems with the current state

•The DMA mapping API only covers a subset of the IOMMU 
functionality

•No explicit support for device isolation

•No possibility to describe the address space of an device 
explicitly

•Defining own device address space is required for device 
passthrough to the guest

•DMA mapping API can not be used for this purpose

•A new API is required to fit these needs
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General Design of the new API

•Support for protection domains (creation, deletion, device 
assignment)

•Allows defining the address space of a protection domain 
in 2 ways

– map pages into the address space of the protection domain

– use a host address space

•IOTLB management functions for the second way

•A commit function for paravirtualizing the API
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General Functions

•iommu_available() - Checks if hardware is available

•iommu_domain_alloc() - Creates a new protection 
domain

•iommu_domain_free() - Deletes a protection domain

•iommu_domain_add() - Adds a device to a domain

•iommu_domain_remove() - Removes a device from a 
domain
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Address mapping functions

•iommu_map_page() - Map a single page into protection 
domain

•iommu_map() - Map a number of pages

•iommu_unmap_page() - Unmap a page

•iommu_unmap() - Unmap a number of pages
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Pagetable Sharing with NPT/EPT

● iommu_use_pagetable() - Use a host pagetable

● iommu_pt_sync_all() - Re-read the complete host 
pagetable

● iommu_pt_sync_range() - Re-read a given region

● iommu_pt_sync_one() - Re-read one address
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Paravirtualized IOMMU

•The API itself is easily paravirtualizable

•But usage may result in many hypercalls

•Therefore a commit function will be introduced

•Allows caching of requests to IOMMU an flush it with a 
single hypercall

•Function: iommu_commit()

•Has to be called to make all address mapping functions 
take affect
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