
A KVM friendly IOMMU API for Linux

Operating System Research Center
Joerg Roedel

August 30, 2007 



2

Outline

1)The current state of IOMMU support

2)Features of an IOMMU

3)The Problems with the current state

4)General Design of the proposed API

5)Address Mapping Functions

6)Pagetable Sharing with NPT/EPT

7)Paravirtualized IOMMU



3

 

 

The current state of IOMMU support



4

The current state of IOMMU support

● Currently there exists the DMA mapping API

● Intended for devices not supporting the full host physical 
address range

● Provides simple functions that map host addresses to bus 
addresses

● Some sync functions to allow a implementation without 
hardware support

● Current IOMMU code only implements this API



5

 

 

Features of an IOMMU



6

Abilities of an IOMMU

•Todays IOMMU support more than simple address 
remapping

•Support of full 64-bit address spaces for devices

•Each device may have its own address space with 
protection domains

•Thus support for device isolation

•[Interrupt remapping – eliminates problems with interrupt 
sharing]



7

 

 

The Problems with the current state



8

The Problems with the current state

•The DMA mapping API only covers a subset of the IOMMU 
functionality

•No explicit support for device isolation

•No possibility to describe the address space of an device 
explicitly

•Defining own device address space is required for device 
passthrough to the guest

•DMA mapping API can not be used for this purpose

•A new API is required to fit these needs



9

 

 

Design of the proposed API



10

General Design of the new API

•Support for protection domains (creation, deletion, device 
assignment)

•Allows defining the address space of a protection domain 
in 2 ways

– map pages into the address space of the protection domain

– use a host address space

•IOTLB management functions for the second way

•A commit function for paravirtualizing the API



11

General Functions

•iommu_available() - Checks if hardware is available

•iommu_domain_alloc() - Creates a new protection 
domain

•iommu_domain_free() - Deletes a protection domain

•iommu_domain_add() - Adds a device to a domain

•iommu_domain_remove() - Removes a device from a 
domain



12

Address mapping functions

•iommu_map_page() - Map a single page into protection 
domain

•iommu_map() - Map a number of pages

•iommu_unmap_page() - Unmap a page

•iommu_unmap() - Unmap a number of pages



13

Pagetable Sharing with NPT/EPT

● iommu_use_pagetable() - Use a host pagetable

● iommu_pt_sync_all() - Re-read the complete host 
pagetable

● iommu_pt_sync_range() - Re-read a given region

● iommu_pt_sync_one() - Re-read one address



14

Paravirtualized IOMMU

•The API itself is easily paravirtualizable

•But usage may result in many hypercalls

•Therefore a commit function will be introduced

•Allows caching of requests to IOMMU an flush it with a 
single hypercall

•Function: iommu_commit()

•Has to be called to make all address mapping functions 
take affect



15

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or 
other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks 
of their respective owners.

©2007 Advanced Micro Devices, Inc. All rights reserved. 


