
Increasing Virtual
Machine Density
With KSM

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

2

Introduction to KSM

KSM is linux kernel module that aim to save

memory by searching and merging identical pages

inside one or more memory areas in a way
invisible

to the user.

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

3

The Need For KSM

As an hypervisor one of the more critical missions

kvm have is sharing resources among guests,

the two most critical resources are:

Cpu resources sharing:

handled by the linux scheduler very effectivly,

when one guest idle its cpu time go into another guest.

Physical memory resources sharing:

handled by the linux swapping mechanism,

when a page is not used frequently by the guest it move into

the disk and another page replace it.

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

4

The Problem With Swapping
And How KSM Solve It

For some workloads such as desktops, high interactive

responsive is needed, swapping is just not an option

for such cases.

KSM solve this problem by allow the system to

overcommit while still all the memory is stored in the

physical ram, this allow fast access to the memory

and keep the system interactive.

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

5

The Implementation Goals
Of KSM

1. Applications using memory that part of it was

merged by KSM should have the same behavior

as if this pages were never merged.

(reading / writing to that pages would result the

same as if this pages were not merged)

2. Finding identical pages should be fast.

3. Merged pages should be treated by the VM like
any other pages (including the abilaty to
swap/migrate this pages)

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

6

Keep Applications Behvior
The Same

KSM mark all the page tables pointed to merged

page as readonly.

When one application write into merged page

it receive a new private copy of this page.

this is all run in the page fault handler without the

application will ever know about it.

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

7

Fast Way To Find Identical
Pages

KSM use hash table data structure in order to find identical

pages in an effective way.

The hash table hold the page frame numbers and is

accessed by the hash value of the page.

Hash value 1

Hash value 2

Hash value 3

Hash value 4

Hash value ...

pfn pfn pfn

pfn pfn pfn

pfn pfn pfn

pfn pfn pfn

pfn pfn pfn

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

8

Fast Way To Find Identical
Pages (reverse mapping)

Since pages can changed, KSM need to update its

hash table after each iteration.

KSM use another hash table accssed by the page

frame number that hold reverse mapping for each

page.

using this reverse mapping KSM check if the hash

value of the page was changed, and update the hash

table if needed

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

9

Adjusted Time

Fast Way To Find Identical
Pages (safe compare)

To avoid a race when page is changed after KSM

found it identical to another page but before the

page was merged:

KSM write protect the two pages and do full compare

on both of them again,

then it is safe to merge the two pages.

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

10

Let The VM Treat The Pages
Like Any Other Page.

The VM use reverse mapping in order to do nice

tricks such as swapping and page migration.

Unfortunately the VM reverse mapping is desgined to use the fact

that ptes pointing to a shared page have the same offset for each

vma holding shared page inside linux, the rmap use this in order to

find the pte inside given vma that point to a shared page, this is

not true for pages that ksm merge, beacuse of this KSM cannot use

without modifications the current reverse mapping found in linux.

(we dont want to use nonlinear vma)

to solve this, we created what we call:

External Rmaps.

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

11

External Rmaps
what is it?

What is it?

External Rmaps is a new methods added to the

kernel that allow for a driver to mange by itself it

rmap.

Drivers using External Rmaps benefit from all the

current code of the main VM, and able to use any

feature that supprted by the VM just like any other

drivers.

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

12

External Rmaps
The Goals

In any case not to increase the size of the page

data structure!!!

Allow users of External Rmaps, to use all the great

features of the main VM.

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

External Rmaps
The Implementation

External Rmaps main data structure is:

struct ext_rmap_ops {
void (*page_add_rmap) — use to add new pte

void (*page_remove_rmap) - use to remove pte

void (*page_free) — call back to recive when page it release

void (*pte_next) — call back to allow walking on the rmap

swap_entry swp — used when the page is swapped.

};

In addition pointer to the ext_rmap_ops struct is

added as a new field to the index and freelist union,

this field is used when the page is extrnal rmap page

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

External Rmaps
The Implementation (identify
extrmap page)

External Rmap Page is identified by checking the
new

PAGE_MAPPING_EXTRMAP bit,

if this bit is set,

the VM will call the Driver private

External Rmap methods instead of the VM rmap.

(External Rmap page can be file backed or

anonymous page)

Copyright © 2008 Qumranet, Inc. All rights reserved.
Strictly Confidential

External Rmaps
The Implementation (swapping)

In order to swap External Rmaps page, the VM use

the following logic:

when the pte is unmmaped by try_to_unmap_one()

the swp_entry is saved inside the ext_rmap struct

and pointer to the ext_rmap structure is saved inside

the pte (the pte is marked as pte_file)

when page is swapped in, Linux check if the pte is

file_pte and if the vma is not nonlinear,

in case that this two cases are meet, we get the

ext_rmap structrue from the pte and in turn we get the

swp_entry from there.

ext_rm
ap

swp_entry

Page data
inside

hard disk

pte

Woof!

