PCI Device Passthrough for KVM

Amit Shah, Qumranet
Allen M. Kay, Intel
Muli Ben-Yehuda, IBM

Ben-Ami Yassour, IBM

Performance
Functionality is to be provided to the guest

Graphics cards
Dongle

TV adapters
Ethernet adapters
Audio cards

Supporting odd-ball devices that don't have
emulation support or equivalent PV drivers

Challenges

PCI Config

MMIO

PIO

Interrupts

Address Translation (DMA)
Security

Hardware ROMs

PCI Config

Virtualizing the PCI BAR

Guest shouldn't change the BAR address on the
host

Virtualizing registers

Passthrough PIO & MMIO

Trapped

Trapped by the host
Emulated by userspace

Passthrough PIO & MMIO

Direct

MMIO

Host traps guest changes to the mmio BAR
Host maps mmio BAR in KVM userspace via sysfs

Host creates a new memory slot for the mmio BAR of the
passthrough device

When the guest accesses mmio region, pagefault is
resolved according to the new mmio memory slot

PIO

Use VMCS / VMCB IO bitmaps to allow the guest to
perform PIlO directly without causing a trap

Passthrough Interrupts

Host registers a passthrough interrupt handler
for IRQ on behalf of the guest

Interrupt recieved by the host is injected into the
guest

Guest acks virtual APIC

Guests can dynamically change IRQs of a
device

Handle with trapping writes to PCI config
space

Passthrough Interrupts

Sharing

Current support only for non-shared IRQ devices
Main concern: guest interrupt ack will be slow
Host keeps getting a lot of interrupts till we ack

Too much overhead on the host to allow this
configuration

However, host Linux already supports MSI

Hence, not too big an issue.

Passthrough Interrupts: Userspace

Alternate method for interrupt injection

Requested by some users

Mainly to support certain non-x86 systems
Userspace IRQ delivery (-no-kvm-irgchip): irghook
Initially written for testing passthrough

Also usable for -no-kvm case

Approaches to Address Translation

|IOMMU-based

Intel VT-d
AMD IOMMU

Software

Paravirtualized guests (PVDMA)
1-1 mapping of guests in host address space

Device-level

Devices support multiple guests and domains
Combined

PVDMA with IOMMU

Address Translation: Intel's VT-d

Provides HW translation from GPA to HPA
Translation granularity is per PCI device

Root entry table is indexed by PCI bus number
Context entry table is indexed by PCI devin
Each context entry points to page directory table
VT-d page table can be 3 or 4 levels

HW caches translation in context entry cache and
IOTLB

VT-d Hardware Overview

A | A
I/ \ Bev 31, Funcly
P pev P, Func @ i-—-—-—-—-—"
+ Fault Generation | " |~ ot 1
? — —‘ Bev P, Func [F > E"):"““: 2
;ev 0, Func @
d . Address Translation
VT- | Device DI Structur_es for
Hardware Device | Domain A
= Partitioning .
Translation Cache Structures |Device D2 :
m——l/\Cress Translation
Structures for
l Partition Cache Domain B

Memory Access with Host Memory-resident 10 Partitioning &
Physical Address Translation Structures

Address Translation: Intel's VT-d

Translation flow:

Guest driver programs IOVA to DMA register in the
device

Direct map: IOVA = GPA

Device moves data to/from memory pointed to by
IOVA

VT-d HW translates IOVA to HPA

Data is correctly accessed at correct physical
memory pointed to by IOVA

KVM and VT-d: Direct Mapping

Leveraging existing Linux VT-d IOMMU driver

Enable Linux VT-d support in the kernel
When a PCI device is assigned

Calls intel_iommu_page mapping() to build VT-d page table
to map the entire guest memory

Top level page directory page is then programmed into the
context entry corresponding to the PCI bus:dev.func

Guest pages are locked into memory so swapping is not
allowed

Page additions to the guest are reflected in the VT-d page table
Each guest has one VT-d page table

Multiple assigned devices share the same table

Address Translation: PVDMA

Purpose is to provide HPA to the guest driver to
program the device

Modify DMA API to translate GPA to HPA
Via hypercalls

Hacky stacking of dma_ops

Enhancements

Immediate: per-device dma_ops (in -mm tree)
Future: stackable dma_ops

Address Translation: PVDMA

] Call original handler, get GPA of DMA location
| Make a hypercall just before writing to device
| Get the GPA->HPA mapping, pin the page(s),

form a sg list and return the pointer to the HPA

[G] Return to original handler

Unmap:

G,
H
G

Make a hypercall
Unpin page(s), delete sg list
Call original handler

Address Translation: PVDMA

Stackable dma_ops needed: swiotlb may be
needed within the guest

dma_alloc_coherent:

It DMA area doesn't reside in high memory or
force_iommu != 1, no dma_ops->alloc_coherent()

(No)Address Translation: 1:1 Mapping of

Guest

Reserve low memory for guest usage
GPA = HPA

Map the entire guest — no swapping or
ballooning

Can't have more than one guest using this
Host won't see the RAM allocated to guest

Can have device assignment without KVM
support

Address Translation: Device Support

Devices themselves can support multiple “channels”

Share single device between multiple guests

Each device instance has own register window, etc.
Needs guest and host drivers to program the device
Lesser risk of device trampling on other domains

PCI-SIG IOV SR-10V and MR-IOV specs recently
finalized

Prototype hardware starting to become available

Comparing Passthrough Methods

Inter-guest Intra-guest Memory IOMM[.J Unmodified
rotection @ protection Pinned remapping guest
i overhead
1:1 mapping o 0 entire guest /a yes — single
memory guest only
PVDMA no no 2l LA n/a no
buffers
Direct map os 0 entire guest none es
IOMMU y memory y
PVDMA with os os active DMA or dma o 6
IOMMU y y puffers | © P

Challenges with Address Translation

Protection
Need to pin all of the guest into RAM

Prevents memory overcommit
Performance

Minimize frequency and cost of IOMMU remappings
IOTLB flushes
Current general virtualization overheads

All: Interrupt injection
PVDMA: Hypercalls

Road Ahead

Get all this merged
Test more devices
Remove host device IRQ number on command line; autodetect

Fail guest startup when a module is already loaded for the
device we're assigning

pci_enable device()
pci_request_regions()
Direct MMIO and PIO without incurring VM exits

Have dma_alloc_coherent() call dma_ops->alloc_coherent();
pave way for PVDMA upstream

PVDMA with IOMMU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

