

Integrating KVM with the Linux Integrating KVM with the Linux
Memory ManagementMemory Management

Qumranet Inc.

Andrea Arcangeli
andrea@qumranet.com

KVM Forum 2008
Napa Valley, California

12 June 2008

mailto:andrea@qumranet.com

KVM VM integrationKVM VM integration
➢ KVM as a kernel module is almost self contained
➢ KVM is generally not intrusive to the Linux VM and
most of other Linux kernel code

➢ As we add more advanced features (and as we
optimize for performance) we need a closer
integration with the Linux Kernel (whenever
possible we try in a generic way not tied to KVM)

➢ We'll cover in this presentation how we intend to
provide the needed integration with the Linux VM
using a functionality we called “MMU Notifier”

➢ Over time this also was sometime called “mm
notifier”, “EMM”, and other aliases, but the
objective of all those patches was the same

Guest Physical MemoryGuest Physical Memory
➢ All the virtualized guest physical ram (what guest
thinks it is ram, and by far the largest amount of
KVM RSS) is allocated with a single memalign()
glibc call (memalign() is the same as malloc() but it
provides page alignment)

➢ Allocating guest physical ram with a malloc
equivalent and finding the physical pages to map
into sptes with get_user_pages() allows KVM
memory to be almost transparent to the Linux VM

➢ Linux immediately tries to swap the malloced
memory representing the guest physical memory
like if it was any other malloc done by any other
task in the system, often it succeeds

MMU Notifier objectiveMMU Notifier objective
➢ The objective of the 'MMU Notifier' is to make the
KVM malloced memory (representing the guest
physical ram) entirely transparent to the Linux VM

➢ The Linux VM will then work the same regardless
if it's paging KVM guest mapped memory or any
other regular Linux task

➢ The 'MMU Notifier' functionality can be also used
by other subsystems like GRU and XPMEM to
export the user virtual address space of
computational tasks to other nodes

➢ This will also allow KVM guest physical ram itself
to be exported to other nodes through GRU and
XPMEM or any other RDMA engine

Avoidance of memory pinningAvoidance of memory pinning
➢ It's not like RDMA or KVM can't work without MMU
Notifiers, but whenever the memory is mapped by
any secondary MMU (either through secondary
sptes or secondary tlbs, or both like in KVM case),
the drivers have to pin the pages to be safe

➢ Pinning the pages means all pages mapped in the
secondary MMU cannot be swapped or paged out

➢ Without 'MMU Notifier' functionality in the host
kernel, the KVM task is not really entirely
pageable, and in fact it's possible for guests to
make the 'malloced' region almost completely
unswappable by touching all guest physical pages
in a loop

KVM page fault and sptesKVM page fault and sptes
➢ The KVM page fault is the one that instantiates the
shadow pagetables

➢ Shadow pagetables works similarly to a TLB
➢ They translate a virtual (or physical with EPT/NPT)
guest address to a physical host address

➢ They can be discarded at any time and they will be
recreated later as new KVM page fault triggers,
just like the primary CPU TLB can be flushed at
any time and the CPU will refill it from the ptes

➢ The sptes are recreated by the KVM page fault by
calling get_user_pages (i.e. looking at the Linux
ptes) to translate a guest physical address (the
malloced region) to a host physical address

VM layout with sptesVM layout with sptes

Guest physical (malloc)

Host RAM

Guest virtual address space

Linux malloc pte (used
either by kvm userland
or kvm page fault to
find the host ram with
get_user_pages)

spte guest pte

2 1 2 1 2 2

VM swap attempt with spte pinsVM swap attempt with spte pins

Guest physical (malloc)

Host RAM

Guest virtual address space

Linux malloc pte (used
either by kvm userland
or kvm page fault to
find the host ram with
get_user_pages)

spte guest pte

1 0 1 0 1 1

sptes must be unmapped toosptes must be unmapped too
➢ The Linux VM is unaware of Linux sptes
➢ The VM is successful at unmapping the Linux ptes
(the one used by the CPU when KVM userland
accesses the guest physical memory)

➢ But the sptes must be zapped too if we want to
swap all the guest pages

➢ sptes are like a secondary MMU, that creates a
separate address space built in function of the
primary MMU ptes

➢ so for Linux to unmap sptes, Linux must become
capable of invalidating all secondary MMUs
mappings

➢ That's what MMU Notifiers are all about

VM layout with mmu notifiers VM layout with mmu notifiers
without spte page pinningwithout spte page pinning

Guest physical (malloc)

Host RAM

Guest virtual address space

Linux malloc pte (used
either by kvm userland
or kvm page fault to
find the host ram with
get_user_pages)

spte guest pte

1 1 1 1 1 1 For simplicity this doesn't include the
temporary VM and swapcache references

try_to_unmap_one() calls try_to_unmap_one() calls
ptep_clear_flush_notify() ptezapptep_clear_flush_notify() ptezap

Guest physical (malloc)

Host RAM

Guest virtual address space

Linux malloc pte (used
either by kvm userland
or kvm page fault to
find the host ram with
get_user_pages)

spte guest pte

1 1 1 1 1 1 For simplicity this doesn't include the
temporary VM and swapcache references

ptep_clear_flush_notify() calls ptep_clear_flush_notify() calls
->invalidate_page() sptezap->invalidate_page() sptezap

Guest physical (malloc)

Host RAM

Guest virtual address space

Linux malloc pte (used
either by kvm userland
or kvm page fault to
find the host ram with
get_user_pages)

spte guest pte

1 1 1 1 1 1 For simplicity this doesn't include the
temporary VM and swapcache references

try_to_unmap_one() unmap the try_to_unmap_one() unmap the
page and the VM swap it outpage and the VM swap it out

Guest physical (malloc)

Host RAM

Guest virtual address space

Linux malloc pte (used
either by kvm userland
or kvm page fault to
find the host ram with
get_user_pages)

spte guest pte

1 1 1 1 1 0 For simplicity this doesn't include the
temporary VM and swapcache references

MMU Notifier v18 APIMMU Notifier v18 API
void (*release)(struct mmu_notifier *mn,

 struct mm_struct *mm);
int (*clear_flush_young)(struct mmu_notifier *mn,

 struct mm_struct *mm,
 unsigned long address);

void (*invalidate_page)(struct mmu_notifier *mn,
 struct mm_struct *mm,
 unsigned long address);

void (*invalidate_range_start)(struct mmu_notifier *mn,
 struct mm_struct *mm,
 unsigned long start,

 unsigned long end);
void (*invalidate_range_end)(struct mmu_notifier *mn,

 struct mm_struct *mm,
 unsigned long start,

 unsigned long end);

Secondary MMU invalidate_pageSecondary MMU invalidate_page
1) pte_clear (primary MMU)
2) tlb_flush (primary MMU)
2) mmu_notifier_invalidate_page (secondary MMU)
2.1) invalidate sptes
2.2) invalidate secondary TLB
2.3) restart any in progress secondary page fault

3) put_page()

Secondary MMU invalidate_rangeSecondary MMU invalidate_range
1) mmu_notifier_range_start()
1.1) block secondary MMU page fault
1.2) invalidate secondary MMU

2) tlb_gather (primary MMU)

3) mmu_notifier_range_end()
3.1) restart any in progress kvm page fault
3.2) unblock any in progress kvm page fault

MMU Notifier and schedulingMMU Notifier and scheduling
➢ XPMEM wants to schedule inside the methods
➢ By solving the race without depending on PT lock
later it will be possible to schedule inside the MMU
Notifier methods by:
➢ changing the anon_vma->lock and i_mmap_lock
from spinlock to rwsem

➢ replacing rcu to srcu
➢ invalidate_range_start/end by blocking the
secondary MMU page fault inside the _start/_end
critical section, can be called outside the
tlb_gather kind of loops
➢ _range_start before taking the PT lock
➢ _range_end after releasing the PT lock

Lock constraintsLock constraints
➢ The major race condition to take care of is the
invalidate of the sptes against the secondary mmu
page fault

➢ ->invalidate_page is called after clearing the linux
pte and before freeing the page, it has to teardown
the sptes internally, and any parallel kvm page
fault is not allowed to establish sptes if
invalidate_page has run after get_user_pages

➢ ->invalidate_range_start must teardown the sptes
in the host virtual range and prevent any
secondary MMU page fault to establish sptes until
invalidate_range_end is called, and
get_user_pages must be repeated then

Host kernel patch exampleHost kernel patch example
+ mmu_notifier_invalidate_range_start(mm, start, start + size);
 err = populate_range(mm, vma, start, size, pgoff);
+ mmu_notifier_invalidate_range_end(mm, start, start + size);

➢ The invalidate_range_start call prevents any
further spte establishment and at the same time
invalidates all sptes before populate_range goes
ahead to rewrite the linux ptes and free the pages
pointed by the old pte values (so the freed pages
are guaranteed to have no sptes mapping them)

➢ After all page freeing and pte mangling is
complete, invalidate_range_end unblocks the kvm
page fault and ensures to reply all in-flight
get_user_pages, so sptes are guaranteed to see
the new linux pte values written by populate_range

KVM MMU Notifier invalidatesKVM MMU Notifier invalidates
➢ The invalidate operation done by the KVM
methods implementing the MMU Notifier
invalidate_page and invalidate_range_start ops
will:
➢ Find the gfn to invalidated by seraching memslots
where the host virtual address or address range
fits

➢ Find the rmap structure that maps a certain gfn to
all sptes possibly mapping it

➢ Mark all sptes invalid and remove them from the
rmap structure

invalidate vs page fault lockinginvalidate vs page fault locking
➢ This is achieved readonly for page fault fast path:
➢ An atomic counter is increased in
invalidate_range_start and is decreased in
invalidate_range_end

➢ A sequence number is incremented before
returning from invalidate_page, and before
decreasing the atomic counter in
invalidate_range_end

➢ After get_user_pages returns, the kvm page fault
takes the kvm->mmu_lock (that serializes all spte
and spte-rmap operations) and proceeds to
establish the spte only if the sequence number is
the same as before calling get_user_pages and if
the counter is zero

MMU Notifier not just for swapMMU Notifier not just for swap
➢ The MMU Notifier is needed for more than secure
and reliable swapping:
➢ Ballooning needs madvise to unmap sptes too in
a way that ensures coherency between userland
and guest address space

➢ KSM must invalidate sptes when do_wp_page
fires on a PageKSM shared page (otherwise the
wrprotected sptes would still point to the oldpage)
➢ This is lucky and can be simulated with kprobes

➢ Removing the need of the page pinning allows
the refcounting to be the same as the one of the
sptes mapping mmio regions with pci-
passthrough

MMU Notifier not just for swapMMU Notifier not just for swap
➢ The MMU Notifier is needed for more than secure
and reliable swapping:
➢ Last but not the least it avoids to replicate the
smp-host safe tlb_gather logic inside KVM by
guaranteeing that the VM holds reference on the
pages mapped by the sptes at all times

➢ Thanks to the page pin dependency removal,
KVM in turn will never put guest-mapped pages
in the freelist itself, and it can flush the tlb once
(just before releasing the mmu_lock that is taken
by the kvm lowlevel mmu notifier methods too) no
matter how many sptes it zapped

Q/AQ/A
➢ You're very welcome!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

