
Linux is a registered trademark of Linus Torvalds. 

Building a Better Userspace
KVM Forum 2008

Anthony Liguori – aliguori@us.ibm.com
Open Virtualization
IBM Linux Technology Center

June 11th 2008



Reflecting on QEMU

We really owe a lot to QEMU



Reflecting on QEMU
● QEMU is a community-driven project

– No company has sponsored major portions of it's 
development

● QEMU does a really amazing thing
– Can emulate 9 target architectures on 13 host 

architectures
– Provides full system emulation supporting ~200 

distinct devices
● Is the basis of KVM, Xen HVM, and xVM Virtual 

Box
– Every Open Source virtualization project uses 

QEMU
● QEMU receives very little credit for this



But all is not well

Many see QEMU as the last mile for open 
virtualization



QEMU has a patch problem
● Many patches are ignored
● Security fixes are not applied in a timely 

manner
● The quality of the patches that are committed 

is often questionable
● Some sub-systems are effectively unmaintained

How do we fix it?



Fixing the QEMU process
● First step

– Patch review
– IBM will be dedicating resources (me) to 

reviewing patches on qemu-devel
– This is now happening (although I need help)

● Second step
– I'll be seeking commit access for virtualization 

support in QEMU
● Many patches will still be committed by other 

people according to subsystem maintainer
● I'll try to review everything I can

● Third step
– As things improve, we can hopefully move to a 

DSCM like git and start taking in pull requests



Patch Review
● We need people reviewing patches on qemu-

devel
– Make use of Reviewed-by, Tested-by, Acked-by

● It's arguable that more committers are needed
– QEMU has about 9 as it is; KVM just has 1

● We need to jump start a culture of review



The Challenge
● Action is needed from the people in the room
● What can we do to facilitate this?



Let's get down to business

Once we fix the QEMU process,
we can start to do the fun stuff



PCI DMA Interface
● We want zero copy

– pci_ram_base + PA is broken, but fast
– iommu emulation complicates zero copy

● Some DMA engines can be programmed to 
perform data transformation (xor)

– The device drivers need lots of updating
● QEMU uses a multilevel table to lookup 

pci_ram_base offsets for a given PA
– Even though there are a small number of 

contiguous ram regions
● 0-640K, 1M-3.8GB, 4GB+

– We should have a fast path for RAM to avoid 
lookups in the l1_phys_map

● Fabrice is on-board



PCI devices today

• Often broken for > 4GB RAM
• Byte-swapping is FUBAR
• IOMMU support is impossible
• This model is fundamentally broken

PCI Bus

PCI DeviceRAM

CPU

cpu_physical_memory_rw, ldl/stl

ldl/stl
cpu_register_physical_memory

pci_register_device



DMA API

PCI Bus

PCI DeviceRAM

CPU

pci_ldl/pci_stl

ldl/stl

cpu_register_physical_memory

pci_register_device

pci_register_region

• Simplify devices; no special PIO/MMIO paths
• Everything goes through PCI bus, allowing zero-copy or IOMMU
• Can finally sanitize byte swapping



Tasklets
● Linux has sucky interfaces

– O_NONBLOCK still blocks
– linux-aio can block
– posix-aio uses threads

● Threads are evil, but are the only way to get 
around synchronous interfaces

● Introduce a generic thread-pool
– Tasks are normally run holding a “big qemu 

lock”
– Tasks can mark themselves as not requiring the 

BQL
– Tasks can also drop the BQL before sleeping

● Caution must be exercised when doing this!



Introducing re-entrancy
● Introduce a QEMUMutex type

– Can be used to make existing code re-entrant
– On platforms without Tasklets, it's simple 

reference counting
– Can be used to gradually wean QEMU off of the 

BQL
● <Refer to QEMUBH code>



Block API
● The current block API is a mix of 

synchronous/asynchronous behavior
– Qcow2 does meta-data lookup synchronously 

but data lookup asynchronously
– Possible source of latency

● We either need to rewrite Qcow2 to use a state 
machine and be entirely asynchronous or

● Make qcow2 synchronous, but re-entrant
● Use tasklets to parallelize qcow2 requests
● Equally applicable to other disk types (vmdk)

– Illustrate current API verses tasklet one



Block API

● bdrv_read()
● bdrv_write()
● bdrv_aio_read()
● bdrv_aio_write()
● bdrv_aio_cancel()
● bdrv_pread()
● bdrv_pwrite()

● bdrv_pread()
● bdrv_pwrite()

Old API New API



Networking
● Current API is good for performance, but bad 

for zero-copy
● For vringfd, we need an API that pre-registers 

RX buffers, preferrably with a batching API for 
RX completion notification

● Can also be used for rate limiting without 
dropping packets
– Illustrate current API



Networking API

VLANState

VLANClientState VLANClientStateVLANClientState

TAPState VirtIONetState

VLANClientState

VirtIONetState

Effectively a HUB

• Does not scale well for > 1 network device
• Cannot take advantage of DMA engines
• Is confusing to users

• fd_read()
• fd_can_read()

• fd_read()
• fd_can_read()

• fd_read()
• fd_can_read()



Proposed Networking API

VLANState

VLANClientState

VirtIONetState

VLANClientState

VirtIONetState

BridgeState

• Use Linux bridging for packet copying
• Use vringfd more effectively
• Can make use of DMA offloading and associated trickery

• add_tx_buffer()
• add_rx_buffer()
• poll_completed()

• add_tx_buffer()
• add_rx_buffer()
• poll_completed()



Managability
● The monitor interface is widely used to 

automate management
– Almost no error messages

● Need a non-human mode for the monitor
● Need a `select' command for receiving 

asynchronous operations
● Need to eliminate assumption of “global 

monitor”
– Each monitor callback should take an opaque 

state parameter
– term_printf() should take that state
– Monitor commands should be dynamically 

registerable



General code quality
● Splitting up vl.c

– Logically divisible into net, chardev, option 
parsing, etc.

● Organizing some of the existing code into 
directories would be a good idea
– Block is long overdue
– Some better organization in hw/

● This must be approach gradually
– There is such a thing as too much cosmetic 

churn



Upstream support for KVM
● Need to get rid of some if (kvm_enabled())
● Need to clean-up qemu-kvm*.c
● Need to fork device models for in-kernel KVM 

devices
– Already do this for PIT, need to do it for APIC

● Get migration, virtio, and PCI hot-plug upstream
– What to do about BIOS changes?

● Introduce a target-kvm
– Useful for embedded PPC, Itanium, and s390
– Would produce a qemu-kvm executable



Where can we get to

A QEMU that we're happy with by
KVM Forum 2009



Questions
● Comments?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

