

KVM i n an HPC Cl oud
by Conr ad Wood

Def i ni t i on HPC Cl oud:

● Can accommodate any “real” network
 configuration

● Is at least as fast as a common physical
 networks

● Is highly-available (feature of a cloud)

● “Real” services also available as HPC Services

● “Behaves” like several “real” datacenters

→ KVMs unique Flexibility allows this

The Cor ner st ones

● The storage: fast and reliable (consistent)

● The network layer: fast, multi-tenant, filterable

● CPUs: mostly to support the above, a “visionary”
 outlook at the end

→ We discuss network and storage and their
 relation to CPU cycles

I . The St or age

● Options: ZFS, Netapp, Gluster and others...

● Non-Integration: consistency on snapshot

● Providing a backup without stopping the VM:
● Caches need to be flushed

● Blocks written in the right order (journals/write-barriers)

● Mirroring with DM/ZFS to provide live-migration

St or age Consi st ency

● In a cloud, access to the guest-os is limited to
 VM-Owner (not cloud-administrators)

● Backups have to be taken on-line

● Most snapshotting solutions require long delays
 in stopping the machine or slow down with each
 snapshot

→ a snapshot should be synchronized to a write-barrier

Wai t i ng f or t he el evat or . . .

● Data travels by elevators on guest, on host, on
 storage system

● Only the storage system knows how to order
 blocks

● Other elevators increase latency and have little
 benefit.

→ Guests need to be modified to 'detect' virtual I/O
 and disable elevators. A common indicator is
 needed

I nt er r upt s & DMA

● Side effect of “elevating”: increase block I/O sizes

● Each interrupt is costly

● Block-drivers, e.g. Virtio, may indicate larger
 block-sizes to the guest

● Worse: switching memory contexts (MMU)
 (IOMMU has limited effect)

Repl i cat i on

● VM-Migration: mesh-like storage access

● Mirroring helps with storage-migration

● Snapshot required to be part of the block-layer

Repl i cat i on

I I . Net wor ki ng

●Very recent Hardware includes options for multi-
tenant / multi-VM:

● SR-IOV (exposed pci-cards)
● VTAG (double-tagging traffic)

●Missing:
● Live-migration
● Filterable traffic

● Others: e.g. vlan-in-vlan, IP-tunnelling

Net wor ki ng Sof t war e

● Current Network software, e.g.

● OpenVSwitch (userland)

● Linux Bridging

● IP-over-IP
can not perform as well due to extensive
checks.

→ The VM traffic needs to bypass as much as
possible as early as possible

Vhost modi f i cat i ons

● Reduce amounts of packets by suggesting a 64k
 MTU to the guest

● Add routing information to the sk_buf and deliver
● it straight out to the physical interface
 (bypassing tun/tap, bridging code etc..)

● Disable CRC/Seg. hardware offloading for speed
● Disjunct management of routing information
● Multi-thread vhost
 = more than 7Gbit/s per TCP Stream

→ Multi-Threading on multi-cores...

Mul t i - Thr eadi ng Net wor k
i ssues

● Multi-thread = better throughput

● Possible starvation of vital number-crunching
 tasks

● 'adaptive' pinning of KVM user-processes to CPUs
● VHost threads follow user-processes (self-regulating

effect)

● Sender and receiver must match
 = maintain max. performance over time

Advanced Net wor ki ng

● Given the speed of a single VM, no IP-stack by
 itself can deliver faster than that

● Services dealing with traffic for multiple VMs
 need to be distributed in the same manner as
 the VMs

● For example, traffic inspection for firewalls need
 to be handled by the same code, in the same
 core as the VHost processes

● VHost modified to utilise iptables' connection
 tracking API to provide this

Di st r i but ed Tr af f i c #1
(t hi s. . .)

Di st r i but ed Tr af f i c #2
(. . . becomes)

Upst r eam commi t ment :

● Results in our environment show huge speed
 improvements (1.2 Gbit/s → 7Gbit/s !)

● Introduction of a “VHost direct routing API”

● VHost direct routing API to allow for the addition
 of new high-speed networking modes with ease

I I I . Hi gh- Avai l abi l i t y

● Any changes to devices need to be performed
 on-line

● PCI-HotPlug: works as expected

● HotPlug: RAM & CPU requires support in
 guestOS, BIOS, QEMU and KVM

CPU Hot pl ug

● Any changes to devices need to be performed
 on-line

● PCI-Hotplug: works as expected

● HotPlug: RAM/Memory/CPU requires support in
 guestOS, BIOS, QEMU and KVM

● The future: KVM-native-tool ?

CPUs (a v i s i on)

● Given current network latency improvements, it
 becomes feasible to start scheduling work
 across high-speed links (e.g. Infiniband)

● Using continuous live-migration to keep ram in-
 sync via RDMA (40GigE/Infiniband)

● Overhead of slow RAM vs. more Cores

● Allows for VMs with more Cores than one
 physical node

Quest i ons & Answer s

Thank you for listening. - Profitbricks

http://www.profitbricks.com

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

