Improving the Out-of-Box KVM Performance

=7

Andrew Theurer, IBM atheurer@us.ibm.com

" Current performance and public benchmarks

Example of “out of box” performance

Some analysis of performance

Improving performance with NUMA aware VM balancer

Beforel/After test results

Future work items

Kernel or User?

" With Industry Standard Benchmarks - it is fantastic!

— SPECvirt_sc2010:
* More per-core #1 results than any other hypervisor (12, 16, 20, 40, 64, 80);

* KVM results now from multiple vendors

* KVM scaling to biggest x86 64 servers
* As with almost any public benchmark, there is a lot of tuning to get the best result

" Out of Box (ad-hoc testing, PoC's, user workloads) — not quite as good as above
— Performance analysis & tuning is generally not done here
* Important that the hypervisor provide the best settings automatically
— Performance can be impacted by not choosing the best options

* Much better now with libvirt, virt-install (defaulting to virtio when possible)

* User may not be experienced with best settings, assumes bigger is better (why
have 2 vCPUs when | can have 16!!)

* Some of the highest performing configurations require special hardware and
special configuration (does the user really know they have to enable virtual
functions for that “SR-10V” thingy?)

— Performance is impacted by lack of NUMA optimizations for VMs

* This is the focus of this presentation

[1] For all details on SPECvirt_sc2010, see spec.org

Let's take a relatively simple test case: 40 VMs (4-way, 2 GB) and have them run
Dbench (in tmpfs) at the same time on a 4 x Westmere-EX server (40 cores)

" Use sensible configurations (para-virtualized 10), no special optimizations
" Compare to “Mystery X86 Hypervisor” (MXH) with default configuration

" Aggregate Dbench throughput:
— KVM: 14541 MB/sec
— MXH: 22919 MB/sec (58% better!?!)

Host CPU stats
— Guest: 97% Host: 3%

* Hypervisor overhead is probably not the primary issue

NUMA optimization

— [proc/<pid>/numa_maps -where is our memory?

[vg-db0040(26824)]

node:[0] pages:[0228984] MiB:[00894
node:[1] pages:[0013569] MiB:[00053
node:[2] pages:[0182557] MiB:[00713
node:[3] pages:[0028473] MiB:[00111
[vg-db0039(26872)]

node:[0] pages:[0095351] MiB:[00372
node:[1] pages:[0114915] MiB:[00448
node:[2] pages:[0025176] MiB:[00098
node:[3] pages:[0217497] MiB:[00849
[vg-db0038(26913)]

node:[0] pages:[0130070] MiB:[00508] percent[028.65]
node:[1] pages:[0026870] MiB:[00104] percent[005.92]
node:[2] pages:[0264026] MiB:[01031] percent[058.16]
node:[3] pages:[0033010] MiB:[00128] percent[007.27]
[vg-db0037(26948)]

node:[0] pages:[0078001] MiB:[00304
node:[1] pages:[0078063] MiB:[00304
node:[2] pages:[0073302] MiB:[00286
node:[3] pages:[0226674] MiB:[00885
[vg-db0036(26986)]

node:[0] pages:[0189318] MiB:[00739] percent[041.84]
node:[1] pages:[0138542] MiB:[00541] percent[030.62]
node:[2] pages:[0009930] MiB:[00038] percent[002.19]
node:[3] pages:[0114656] MiB:[00447] percent[025.34]
[vg-db0035(27029)]

node:[0] pages:[0035075] MiB:[00137
node:[1] pages:[0266316] MiB:[01040
node:[2] pages:[0020798] MiB:[00081
node:[3] pages:[0131779] MiB:[00514

percent[050.48]
percent[002.99]
percent[040.25]
percent[006.28]

percent[021.05]
percent[025.37]
percent[005.56]
percent[048.02]

percent[017.10]
percent[017.12]
percent[016.07]
percent[049.70]

percent[007.73]
percent[058.66]
percent[004.58]
percent[029.03]

Memory

scattered
across node
for all VMs

[vg-db0034(27062)]

node:[0] pages:[0173804]
node:[1] pages:[0093313]
node:[2] pages:[0030831]
node:[3] pages:[0155011]
[vg-db0033(27100)]

node:[0] pages:[0265909]
node:[1] pages:[0062230]
node:[2] pages:[0044257]
node:[3] pages:[0080547]
[vg-db0032(27138)]

node:[0] pages:[0025163]
node:[1] pages:[0113478]
node:[2] pages:[0127552]
node:[3] pages:[0189330]
[vg-db0031(27182)]

node:[0] pages:[0011550]
node:[1] pages:[0083236]
node:[2] pages:[0100223]
node:[3] pages:[0257437]
[vg-db0030(27215)]

node:[0] pages:[0144517]
node:[1] pages:[0056723]
node:[2] pages:[0080227]
node:[3] pages:[0171986]
[vg-db0029(27253)]

node:[0] pages:[0052847]
node:[1] pages:[0097325]
node:[2] pages:[0051285]
node:[3] pages:[0251995]

MiB:[00678]
MiB:[00364]
MiB:[00120]
MiB:[00605]

MiB:[01038]
MiB:[00243]
MiB:[00172]
MiB:[00314]

MiB:[00098]
MiB:[00443]
MiB:[00498]
MiB:[00739]

MiB:[00045]
MiB:[00325]
MiB:[00391]
MiB:[01005]

MiB:[00564]
MiB:[00221]
MiB:[00313]
MiB:[00671]

MiB:[00206]
MiB:[00380]
MiB:[00200]
MiB:[00984]

percent[038.37]
percent[020.60]
percent[006.81]
percent[034.22]

percent[058.71]
percent[013.74]
percent[009.77]
percent[017.78]

percent[005.52]
percent[024.91]
percent[028.00]
percent[041.56]

percent[002.55]
percent[018.40]
percent[022.15]
percent[056.90]

percent[031.87]
percent[012.51]
percent[017.69]
percent[037.93]

percent[011.65]
percent[021.46]
percent[011.31]
percent[055.57]

* Why is memory scattered?
— Linux kernel CPU scheduler NUMA policies:
« Current policies work well for short-lived tasks:

— Initial placement in least loaded Node

— ldle CPUs look for tasks to steal

— Periodic, timer based load balances

— CPUs can steal tasks from other CPUs, but scope is limited:

» Only sibling thread most often
» Sibling cores less often
» All logical CPUs in system even less often

* Long lived tasks (like VMs!) do not work well under current policies

Load balances with large scopes of CPUs to steal from (whole system)
eventually do happen, scattering tasks for a VM across system

VM Memory is faulted in the same node where the vCPU is running, so as
vCPUSs run across the system, memory is also faulted in across the system

No policy to keep tasks in a group “close” and no policy to “bulk-move”
these tasks to balance the CPU load

No influence from current memory placement for tasks

" Proof-of-Concept: A first attempt at optimizing VM placement to promote node-local
CPU-memory communication

" Requires cpuset cgroups (works well with libvirt)
— Cpuset can migrate cpus and memory

User-space perl program (vmbalanced) performs the following:
— Monitor cgroups, discover new VMs, do initial VM to NUMA node placement
— Every 5 seconds analyzes CPU load and attempts to re-balance VMs

What this does not yet do:
— Does not handle really large VMs (ones that would not fit in a single node)
— Does not currently overcome memory capacity issues
* Current tests have enough host memory to not make this a problem
* Trying to keep the first pass at this simple
* Obviously needs to be addressed

User-space VM balancer

START

Check /cgroup/cpuset/libvirt/qgemu

for new groups

X

Are all of the following true?
) nr_running_high — nr_runnig_low >=
b) load_high / load_low >1.1
c) load_high >1.0

Select a VM from node_high and
move to node_low (all done via
cpusets)

\

Y

New
group?

Randomly assign node for new VM

Y

Sleep for 5 seconds

v

Collect system utilization data:
system nr_running
per-node nr_running
per-node load (nr_running/nr_cpus)
system load (nr_running/nr_cpus)

nr_running

Identify node with highest & lowest

!

For each NUMA node:
For each VM in node:
Get per-VM nr_running

40 VMs running dbench:

MXH 22919 MB/sec
KVM, no balancer: 14541 MB/sec
KVM, with balancer: 18771 MB/sec (29% improvement!)

KVM, manual binding (10 VMs per node) 18896 MB/sec
* About the same throughput as balancer and the best we could expect for
balancer
This test is actually not that challenging
* Initial placement gets it mostly right
* Only a few VM migrations necessary during dbench run
* Regardless, a simple algorithm can make a dramatic difference
Perf stats:
* Off-node memory accesses (lower is better):

— No balancer: 217.6 M/sec

— Balancer: 6.2 M/sec

— Manual Binding: 0.9 M/sec
* Instructions per cycle (higher is better)

— No Balancer: 0.293

— Balancer: 0.374

— Manual Binding: 0.374

[Mon Aug 8 22:12:46 CDT 2011]

node nr_running nr_cpus load imbalance VMs(nr_running)

node0 37 20 1.850000 -008.64 vg-db0030: 4 vg-db0038: 4 vg-db0016: 4 vg-db0002: 4 vg-db0026: 4 vg-db0037: 4 vg-db0023: 4 vg-db0028: 4 vg-db0010: 4

nodel a4 20 2.200000 0008.64 vg-db0018: 5 vg-db0003: 4 vg-db0036: 4 vg-db0007: 4 vg-db0004: 5 vg-db0014: 4 vg-db0027: 3 vg-db0011: 5 vg-db0012: 4 vg-db0021: 4 vg-db0035: 4
node2 52 20 2.600000 0028.40 vg-db0020: 4 vg-db0006: 4 vg-db0032: 5 vg-db0017: 4 vg-db0001: 4 vg-db0034: 4 vg-db0024: 5 vg-db0019: 4 vg-db0031: 4 vg-db0040: 4 vg-db0015: 4 vg
5 vg-db0008: 5

node3 29 20 1.450000 -028.40 vg-db0022: 4 vg-db0039: 4 vg-db0025: 4 vg-db0013: 5 vg-db0009: 4 vg-db0033: 5 vg-db0029: 4

all 162 80 2.025000 0000.00

hen 40 VMs start their
workloads there is some
load imbalance

The nr_running_high[52], nr_running_low[29], nr_running_diff[23], load_high[2.600000], load_low[1.450000], load_ratio[1.792980]
moving [vg-db0020] from node [node2] to node [node3]
VM migration elapsed time: 6.905896

[Mon Aug 8 22:12:56 CDT 2011]

node nr_running nr_cpus load imbalance VMs(nr_running)

node0 37 20 1.850000 -008.64 vg-db0030: 4 vg-db0038: 5 vg-dh0016: 4 vg-db0002: 4 vg-db0026: 4 vg-db0037: 4 vg-db0023: 5 vg-db0028: 4 vg-db0010: 4

nodel 43 20 2.150000 0006.17 vg-db0018: 4 vg-db0003: 5 vg-db0036: 4 vg-db0007: 4 vg-db0004: 4 vg-db0014: 4 vg-db0027: 4 vg-db0011: 4 vg-db0012: 4 vg-db0021: 5 vg-db0035: 4
node2 50 20 2.500000 0023.46 vg-db0006: 4 vg-db0032: 4 vg-db0017: 4 vg-db0001: 4 vg-db0034: 4 vg-db0024: 4 vg-db0019: 4 vg-db0031: 4 vg-db0040: 4 vg-db0015: 4 vg-db0005: 5 vg
4

node3 32 20 1.600000 -020.99 vg-db0022: 4 vg-db0039: 4 vg-db0025: 5 vg-db0020: 4 vg-db0013: 4 vg-db0033: 4 vg-db0029: 4 vg-db0009: 5

all 162 80 2.025000 0000.00

The nr_running_high[50], nr_running_low[32], nr_running_diff[18], load_high[2.500000], load_low[1.600000], load_ratio[1.562402]
moving [vg-db0006] from node [node2] to node [node3]
VM migration elapsed time: 4.228818

[Mon Aug 8 22:13:04 CDT 2011]

node nr_running nr_cpus load imbalance VMs(nr_running)

node0 36 20 1.800000 -011.11 vg-db0030: 4 vg-db0038: 5 vg-db0016: 4 vg-db0002: 4 vg-db0026: 5 vg-db0037: 4 vg-db0023: 4 vg-db0028: 5 vg-db0010: 4

nodel 44 20 2.200000 0008.64 vg-db0018: 4 vg-db0003: 4 vg-db0036: 4 vg-db0007: 5 vg-db0004: 4 vg-db0014: 4 vg-db0027: 4 vg-db0011: 4 vg-db0012: 4 vg-db0021: 4 vg-db0035: 5
node2 44 20 2.200000 0008.64 vg-db0032: 4 vg-db0017: 4 vg-db0001: 4 vg-db0034: 4 vg-db0024: 4 vg-db0019: 4 vg-db0031: 4 vg-db0040: 4 vg-db0015: 4 vg-db0005: 4 vg-db0008: 4
node3 38 20 1.900000 -006.17 vg-db0022: 5 vg-db0039: 5 vg-db0025: 5 vg-db0020: 4 vg-db0006: 4 vg-db0013: 4 vg-db0033: 4 vg-db0029: 4 vg-db0009: 4

all 162 80 2.025000 0000.00

The nr_running_high[44], nr_running_low[36], nr_running_diff[8], load_high[2.200000], load_low[1.800000], load_ratio[1.222154]
moving [vg-db0018] from node [nodel] to node [node0]
VM migration elapsed time: 4.913064

[Mon Aug 8 22:13:11 CDT 2011]

node nr_running nr_cpus load imbalance VMs(nr_running)

node0 41 20 2.050000 -004.65 vg-db0018: 4 vg-db0030: 4 vg-db0038: 4 vg-db0016: 5 vg-db0002: 4 vg-db0026: 4 vg-db0037: 4 vg-db0023: 4 vg-db0028: 5 vg-db0010: 4

nodel 45 20 2.250000 0004.65 vg-db0003: 4 vg-db0036: 4 vg-db0007: 4 vg-db0004: 4 vg-db0014: 4 vg-db0027: 5 vg-db0011: 4 vg-db0012: 4 vg-db0021: 4 vg-db0035: 4

node2 46 20 2.300000 0006.98 vg-db0032: 4 vg-db0017: 4 vg-db0001: 4 vg-db0034: 4 vg-db0024: 5 vg-db0019: 4 vg-db0031: 4 vg-db0040: 4 vg-db0015: 4 vg-db0005: 4 vg-db0008: 4
node3 40 20 2.000000 -006.98 vg-db0022: 4 vg-db0039: 4 vg-db0025: 4 vg-db0020: 4 vg-db0006: 4 vg-db0013: 4 vg-db0033: 4 vg-db0029: 4 vg-db0009: 4

all 172 80 2.150000 0000.00

The nr_running_high[46], nr_running_low[40], nr_running_diff[6], load_high[2.300000], load_low[2.000000], load_ratio[1.149943]
moving [vg-db0032] from node [node2] to node [node3]
VM migration elapsed time: 5.302738

After a few iterations the
VMs are balanced
[Mon Aug 8 22:13:20 CDT 2011]

node nr_running nr_cpus load imbalance VMs(nr_running)

node0 41 20 2.050000 -001.20 vg-db0018: 4 vg-db0030: 4 vg-db0038: 4 vg-db0016: 4 vg-db0002: 4 vg-db0026: 4 vg-db0037: 5 vg-db0023: 4 vg-db0028: 4 vg-db0010: 4
nodel 41 20 2.050000 -001.20 vg-db0003: 4 vg-db0036: 4 vg-db0007: 4 vg-db0004: 4 vg-db0014: 4 vg-db0027: 4 vg-db0011: 4 vg-db0012: 4 vg-db0021: 4 vg-db0035: 4
node2 43 20 2.150000 0003.61 vg-db0017: 4 vg-db0001: 5 vg-db0024: 4 vg-db0034: 4 vg-db0019: 4 vg-db0031: 4 vg-db0040: 4 vg-db0015: 4 vg-db0005: 4 vg-db0008: 4
node3 41 20 2.050000 -001.20 vg-db0022: 4 vg-db0039: 4 vg-db0025: 4 vg-db0020: 4 vg-db0006: 4 vg-db0032: 4 vg-db0013: 5 vg-db0033: 4 vg-db0029: 4 vg-db0009: 4
all 10 166 80 2.075000 0000.00

The nr runnina hiahl431. nr runnina lowl411l. nr runnina difffl21. load hiahl2.1500001. load lowl2.0500001. load ratiol1.0487291

* Let's try something more challenging

* Use 20 of the 40 VMs: select 20 VMs from just the first 2 NUMA nodes
— Immediately following the 40 VM test

* At the beginning of the test, 20 VMs will saturate the CPU from first 2 nodes
* To get the best throughput, %2 of these VMs will need to be migrated

- MXH 19164 MB/sec
— KVM, no balancer: 15298 MB/sec
— KVM, with balancer: 19374 MB/sec

 Slightly better than MXH!
— KVM, manual binding (10 VMs per node) 9096 MB/sec
* Good example of why manual binding has limited use (VMs are stuck on first

two nodes)
— Perf stats:

* Off-node memory references (lower is better):
— No balancer: 212.2 M/sec
— Balancer: 5.8 M/sec
— Manual Binding: 0.7 M/sec

* Instructions per cycle (higher is better)
— No Balancer: 0.307
— Balancer: 0.395
— Manual Binding: 0.346

11

12

40 VM test
— Out of the box performance improved by 29%
— NUMA optimization relatively easy, as initial placement does most of the work
— Relatively few balance operations needed to get even balance
— Can achieve same throughput as manual binding
— Still need another 29% to get parity with MXH
* CPU is over-committed

— vCPU run time can affect cache warmth, probably worth investigating
— Lock-holder preemption might be occurring

20 VM test
— Out-of-the box performance improved by 26%
— Performance parity with MXH

13

Re-balance to correct memory imbalance
— Probably not too hard if there is not a CPU constraint
— Much harder when you are trying to fix memory and CPU imbalance
— Instead of simply moving a single VM one at a time, may require swapping (1 for 1, 1
for 2 or 3) VMs across nodes to get good balance

Re-balance to optimize KSM for NUMA locality
— If a set of VMs have a lot of shared pages, ideally they should be on the same node

VM migration probation period (to correct a CPU imbalance)
— If you are concerned the need for CPU is temporary, don't waste a lot of cycles
moving VM memory around
— Move CPUs first, confirm this was not a very short term need, then move VM
memory. If the need for CPU goes away, then revert the CPU move.
— Or, just always lazily move memory (but not easy to implement)

When moving VMs pick a VM which has lowest resident memory/CPU-usage
— Moving memory is costly, get the best bang/buck by picking VMs that are “easy” to
move

Handle really big VMs
— Big VMs can require CPU and memory from more than one node
— Create multi-Node VMs, with CPU and memory per VM-node
— Treat each VM-node as a small VM in the host, move VM-nodes independently (not
really compatible with CPU sets, need to migrate individual memory mappings)

14

Should this work move to kernel scheduler?

— Pros
* More control — scheduler can generally react to changes much faster
* Opportunity to do with other things like gang scheduling, entittement guarantees,

latency guarantees for virtualization

— Cons
* You have to actually get it included in scheduler code
* Much higher risk and probably requires a lot more testing

— Could lower the speed at which changes could be made and delivered to
users

Questions?

15

16

Iprocistat provide nr_running per CPU
— necessary for user space VM balancer

— cpu_load also made available, but not used at this time

diff -Naurp linux-2.6.39/fs/proc/stat.c linux-2.6.39b/fs/procl/stat.c
--- linux-2.6.39/fs/procl/stat.c 2011-05-18 23:06:34.000000000 -0500
+++ linux-2.6.39bl/fs/procl/stat.c 2011-07-20 13:51:45.376004463 -0500
@@ -91,7 +91,7 @@ static int show_stat(struct seq_file *p,
guest_nice = kstat_cpu(i).cpustat.guest_nice;
seq_printf(p,

"cpu%d %llu %llu %llu %llu %llu %llu %llu %llu %llu "
- "%llu\n",
+ "%llu %lu %lu\n",

I

(unsigned long long)cputime64_to_clock_t(user),

(unsigned long long)cputime64_to_clock_t(nice),
@@ -102,7 +102,9 @@ static int show_stat(struct seq_file *p,
(unsigned long long)cputime64_to_clock_t(softirq),
(unsigned long long)cputime64_to_clock_t(steal),
(unsigned long long)cputime64_to_clock_t(guest),
(unsigned long long)cputime64_to_clock_t(guest_nice));
(unsigned long long)cputime64_to_clock_t(guest_nice),
nr_running_cpu(i),
cpu_load(i));

+ o+ o+

}

seq_printf(p, "intr %llu”, (unsigned long long)sum);

diff -Naurp linux-2.6.39/include/linux/sched.h linux-2.6.39bl/include/linux/sched.h
--- linux-2.6.39/include/linux/sched.h 2011-05-18 23:06:34.000000000 -0500
+++ linux-2.6.39blincludel/linux/sched.h 2011-07-20 13:50:27.096004478 -0500
@@ -137,9 +137,11 @@ extern int nr_threads;
DECLARE_PER_CPU(unsigned long, process_counts);

extern int nr_processes(void);

extern unsigned long nr_running(void);

+extern unsigned long nr_running_cpu(unsigned long cpu);

extern unsigned long nr_uninterruptible(void);

extern unsigned long nr_iowait(void);

extern unsigned long nr_iowait_cpu(int cpu);

+extern unsigned long cpu_load(int cpu);

extern unsigned long this_cpu_load(void);

diff -Naurp linux-2.6.39/kernel/sched.c linux-2.6.39b/kernel/sched.c

--- linux-2.6.39/kernel/sched.c 2011-05-18 23:06:34.000000000 -0500

+++ linux-2.6.39b/kernel/sched.c

@@ -3017,6 +3017,11 @@ unsigned long nr_running(void)
return sum;

}

+unsigned long nr_running_cpu(unsigned long cpu)
+

+ return cpu_rqg(cpu)->nr_running;

+}

+

unsigned long nr_uninterruptible(void)

{
unsigned long i, sum = 0;

@@ -3061,6 +3066,12 @@ unsigned long nr_iowait_cpu(int cpu)
return atomic_read(&this->nr_iowait);

}

+unsigned long cpu_load(int cpu)
+
+ struct rq *this = cpu_rq(cpu);
+ return this->cpu_load[0];
+}
+
unsigned long this_cpu_load(void)
{

struct rq *this = this_rq();

2011-07-20 13:50:14.746004482 -0500

Backup Slides

* CPU utilization of 20 VM test (20 VMs initially on just first 2 NUMA nodes)
— First minute indicates VMs moved to 2 unused NUMA nodes and eventually using

CPU from all nodes
— After first minute, a couple periods of lower CPU might indicate incorrect balances

01 - CPU all

CPU Utilization

140 160 180 200 220 240 2B0

Time (secs.)

B cpu all irgy 3 cpu all softirg
I cpu Al icle

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

