LiveBackup

Jagane Sundar
jagane@sundar.org

LiveBackup
A complete Backup Solution

* Create Full and Incremental Backups of running VMs

* A System Administrator or Backup Software can use
livebackup_client to connect to the gemu process using a TCP
socket and transfer dirty blocks over

* Once dirty blocks are transferred over:

They can be saved in an incremental backup file and written to
tape, or

The dirty blocks can be applied to a full backup image and kept
ready to restart the VM on the backup host

LiveBackup - Overview

Live
Backup

Qemu

LiveBackup’s copy of
VM'’s Virtual Disk Files

VM’s Virtual Disk Files

LiveBackup
client

| vdisk0’ |

LiveBackup
Design Principles

Designed for cloud operator needs

Must have minimal performance impact on the running VM
while it is in normal operation

Must work with all types of virtual disk types, qcow, gcow?2,
LVM volumes, etc.

Under failure circumstances, the operation of the VM must
not be impaired (the backup operation can be sacrificed, but
the VM must continue to operate just fine)

Extra disk requirements should not be onerous

LiveBackup
A Complete Backup Solution

* Solution consists of:

Functional improvements to the gemu block layer:

Track dirty blocks in memory since last full backup. Persist this
across VM reboots

A custom network protocol to transfer dirty disk blocks (will
possibly be replaced by enhancements to libvirt)

A snapshot mechanism to maintain a snapshot while the
backup client transfers the dirty blocks over to the backup
server

livebackup_client to transfer dirty blocks from gemu

LiveBackup
Characteristics

* Most of the time, i.e. when a livebackup_client is not
connected to gemu, LiveBackup merely sets a bit in the
in-memory bitmap indicating that the block has been
‘dirtied’

* When a backup client wants to take a backup, it will to
create a point-in-time snapshot of all the virtual disks,
usually after inducing the Application and Guest OS to
flush buffered data

LiveBackup Example
Backup a VM that uses mysql

* ssh into guest OS and run mysql command:
‘flush tables with read lock’

* Run ‘sync’ on guest OS to flush blocks (wait for a few
seconds)

* Connect to gemu livebackup and call ‘create snapshot’

* ssh into guest OS and run mysql command:
‘unlock tables’

* Connect to gemu livebackup and copy blocks for
snapshot (all blocks for full backup, just dirty blocks for
incremental backup)

* Connect to gemu livebackup and call ‘destroy snapshot’

Timeline of backup operation

> A > A 7 A > A > A >
LiveBackup client
A\ 4 > P . >
flurs]Ly::kl;les 0 "sync’ a
with read lock guest (with mysql, etc.)

FTlme during wh:ch _>
mysql cannot w_rlte

Time during which

snap is active g

Livebackup — Normal operation

vdiskO — Each small rectangle is a 512 byte block

In-memory dirty blocks bitmap

(1)VM requests write Yo a block
(2)Qemu sets a bit in the dirty blocks bitmap
(3)Qemu writes block to‘file

Livebackup — livebackup_client calls shapshot

vdiskO — Each small rectangle is a 512 byte block

slivebackup_client connects to gemu and In-memory dirty blocks bitmap

asks for snapsho 7

*Qemu moves existing dirty blocks bitmap
to livebackup_snapshot struct (only one
snapshot can exist)

*Qemu allocates new dirty blocks bitmap

Struct livebackup_snapshot

dirty blocks bitmap at the time of snapshot
-]

Bitmap of blocks in the COW file
-]

COW file containing modified blocks

Livebackup — livebackup_client runs backup

vdiskO — Each small rectangle is a 512 byte block

*VVM calls gemu to write block(s)

livebackup_interposer checks if any of
these blocks are marked dirty in
livebackup_snapshot's dirty bitmap

*|f s0, the blocks that are going to be
overwritten are read in and saved to the
COW file in the livebackup_snapshot.
Then the VM's write is allowed to proceed

*In the meantime, livebackup_client is
busy copying the blocks marked dirty in
livebackup_snapshot over the network.
The COW file in the livebackup_snapshot
is checked for dirty blocks before reading
from the base file

In-memory dirty blocks bitmap
00|

Struct livebackup_snapshot

dirty blocks bitmap at the time of snapshot

Bitmap of blocks in the COW file

COW file containing modified blocks

Livebackup — VM write while livebackup_client runs backup

(1) Set dirty bit in current dirty blocks bitmap {3} If block is in snapshot's dirty blocks map, then copy that block

From vdiskO into COW file, then perform's ViMs write

(2) Check whetfter block.s in

snapshot's dirty bhocks bitrmap

Struct livebackup snapshot

irty blocks bitmap at the time of snapshot

In-memory di locks bitmap

COW file containing modified blocks

vdiskO — Each small rectangle is a 512 byte block

Usage Example

Livebackup Server (built into gemu process for the VM)

./x86_64-softmmu/gemu-system-x86_64 \

-drive file=/dev/kvm_vol_group/kvm_root_part,boot=on,if=virtio,livebackup=on \
-drive file=/dev/kvm_vol_group/kvm_disk1,if=virtio,livebackup=on \

-vhc 0.0.0.0:1000 -usb -usbdevice tablet \

-livebackup_dir /root/kvm/livebackup

-livebackup_port 7900 \

-m 512 -net nic,model=virtio,macaddr=52:54:00:00:00:01 \

-net tap,ifname=tap0,script=no,downscript=no

Livebackup Client (run on backup server)

livebackup_client /root/kvm-backup 192.168.1.220 7900

LiveBackup
Failure Scenarios

* gemu crashes during normal operation of the VM

livebackup client is forced to do a full backup the next time
around

* gemu crashes while livebackup is in progress

livebackup client is forced to do a full backup the next time
around

* livebackup_client crashes while livebackup is in progress

a new livebackup_client can redo the last type of backup it was
doing - an incremental backup or a full backup

In most failure scenarios, the backup is impacted, but
the VM itself continues to run unimpaired

LiveBackup
Testing methodology

Hypothesis: LiveBackup creates a backup of all the virtual disks
of a VM such that the backup virtual disk images will be a bit for
bit match of the virtual disk images at the point in time when
the livebackup _client program issues a ‘create snapshot'
command

| added code to my implementation of do_snap in livebackup.c, such that
after the livebackup snapshot is created, | would invoke Ivcreate to create
a LVM snapshot of the underlying LVM logical volume

/sbin/Ivcreate -L1G -s -n kvm_root_part_backup
/dev/kvm_vol _group/kvm_root _part

Run the livebackup_client on the same machine as the VM to create a
backup image of the virtual disks

Run ‘cmp’ to compare the backup disk image file and the snapshot logical
volume created

cmp /dev/kvm_vol _group/kvm_root_part _backup kvm_root_part

Git repositories

- git://github.com/jagane/gemu-livebackup.git
- git://github.com/jagane/qemu-kvm-livebackup.git

LiveBackup
Thank You

Question? Comments? Flames?

Jagane Sundar
jagane@sundar.org

