Rapid VM Synchronization with I/0
Emulation Logging-Replay

Kei Ohmura
NTT Cyber Space Labs.
ohmura.kei@lab.ntt.co.jp

Motivation

VM replication including backend storage is
important
— enables use of shared-nothing architecture
— enhances VM mobility

« However, it heavily degrades VM performance

 Live migration
« Regular sync to avoid
hardware failure

Primary host Copyright(c) 2011 NTT, corp. All Rights Reserve§econdary host

Our goal and approach

e Goal

— Developing a rapid VM (including backend storage)
synchronization mechanism

e Approach

— logging-replay: The secondary VM replays the disk
I/O events produced by the primary VM.

Primary

dirty pages
device info

I/0 logs I

As a result, secondary
VM'’s disk data is the
same as the primary VM’s

Secondary

How to replicate VM and disk data?

Primary Secondary

Guest | Memory \ ‘ Memory \ Guest
QEMU QEMU
HW HW

- RN

/
IE
\@J =

Copyright(c) 2011 NTT, corp. All Rights Reserved.

How to replicate VM and disk data?

Primary dirty pages Secondary
Guest Momory device info Momory Guest
1

SN

/_
\

QEMU QEMU

......................................

HW HW

dlrty blocks

Copyright(c) 2011 NTT, corp. All Rights Reserved.

/

(

How to replicate VM and disk data?

Primary

dirty pages

Guest

Memory

/_
\

Secondary

device info
7

—)

‘ Memory \ Guest

I/0 logs

QEMU

......................................

QY

)

QEMU

HW

s
N

Replays the disk
write events

=l

PN using I/0 logs

* Transfer I/0 logs instead of dirty blocks to the secondary VM
— Transfer VM info(dirty pages and device info) to the secondary VM as usual

« The secondary VM only replays disk write events using I/O logs

Copyright(c) 2011 NTT, corp. All Rights Reserved. 6

Disk consistency

 Needs to be the same VM memory as the
primary VM’s when secondary VM replays
disk write events

— Secondary VM can’t make the same VM
memory as the primary VM’s

 Should we sync VMs when primary VM
runs disk write events?

Specific event-driven VM synchronization

 Disk write using two kinds of data
— dirty pages and non-dirty pages

Primary Secondary
Guest ‘ Memory ‘ Memory Guest
A\
A

- ll

Copyright(c) 2011 NTT, corp. All Rights Reserved.

Specific event-driven VM synchronization

 Disk write using two kinds of data
— dirty pages and non-dirty pages

Primary Secondary
] [

Guest Memory 4 } Memory Guest

Updated before
synchronization

g 8

Copyright(c) 2011 NTT, corp. All Rights Reserved.

Specific event-driven VM synchronization

 Disk write using two kinds of data
— dirty pages and non-dirty pages

Primary dirty pages Secondary
Guest Memory device info Memory Guest
I/0 Io%s
A\

Replayed disk write
using updated
memory data

‘ Dok ’ Dok invalid disk
l—] data

Copyright(c) 2011 NTT, corp. All Rights Reserved. 10

/\

Implementation

« Kemari: VM synchronization mechanism
for achieving fault tolerance
— Needs shared disks

« Kemari with logging-replay can become a
shared-nothing architecture

o000
4d |4 | €
O O

0 |
Tardwareing) ;.'d |
failure ‘P m»
fl b,

Q. failover ="

Copyright(c) 2011 NTT, corp. All Rights Reserved.

11

Architecture based on QEMU/KVM

Guest
VM

OEMU

sender ¢

OEMU

> receiver

(Adirty pages

_/ device Info

” ' 1/0logs

|

emulator

Vv

I/O-Iog(_:jing

v

blqck

v

device info

[dirty pages\,
I/0 logs

Guest
VM

emulat@r

N

I/O-replay

v

blgck

\

Linux

KVM

LinuXx

KVM

HW

HW

« I/O-logging: saves the disk write events’ logs

« I/O-replay: replays the disk write events using I/O logs

Copyright(c) 2011 NTT, corp. All Rights Reserved.

12

I/O-logging: saves the disk write events’ logs

Primary
Guest OS
QEMU
Emulator
MW
v v
I/0-logging
blqck
_ v
Linux KVM
HW | Intel VT/AMD-V

e Saves I/0O logs at block layer in
QEMU

— applicable to many device models

* Need to save the following
information to replay disk I/0O
events:

— device name
= to get BlockDriverState structure
— memory page address
= to get disk write data
(memory data transferred already)
— num and location of disk sectors
= to write data

Copyright(c) 2011 NTT, corp. All Rights Reserved. 13

I/O-Replay: replays the disk write events using I/0O logs

Secondary - Secondary VM requests I/0
Guest OS events using I/0 logs from block-
QEMU layer
Emulator o
« I/O-Replay’s callback function is
e vIrto-bIk invoked when disk write is
finished
I/O-RepLay
“‘\.,\Ca”baCk I/O-replay runs at the block-layer
bl?Ck — device info is not modified
Linux KVM
HW

Copyright(c) 2011 NTT, corp. All Rights Reserved. 14

Experimentation

 Experiment items
— Traffic needed to synchronize VMs and disks
— Performance of the primary VM (File I/O) using I0zone
e Techniques implemented in Kemari:
— logging-replay
— dirty-block-copy
e Transferring dirty blocks to secondary VM

 Experimental environment

— Hardware specs:
e« CPU: Quad-core Intel Xeon 2.6GHz X 2
 Network: 1 GbE

— VM specs:

KVM: Linux 2.6.33

QEMU: gemu-0.14.0

Guest OS: Debian lenny w/ virtio-blk
Memory: 1 GB

Traffic

6
= Disk
m\VM
509% down
—~ 4 B M
(a8
=
(®)
C
>
(0)]
o2 r
©
|_
0

logging-replay dirty-block-copy

« Logging-replay reduces the traffic needed to

synchronize only disks by 99%

Copyright(c) 2011 NTT, corp. All Rights Reserved.

16

Synchronized NW traffic (1 Gbps)

1000

S o)) 00
o o o
o o o

Traffic (Mbps)

N
o
o

’’’’’

Around 700 Mbps
.. | at peak time

|

-

—Ilogging-replay

dirty-block-copy

10 15

Time (sec)

20

 Logging-replay reduces average traffic by 50%

« Traffic is as high as around 700 Mbps

— Feature of event-driven synchronization
Copyright(c) 2011 NTT, corp. All Rights Reserved.

17

File I/O for both bandwidths

20000 :
® logging-replay
m dirty-block-copy
15000 |
Q
oa)
N
10000 r
-
% 160% up
-
o 5000 r
g iy
|_
0

1 Gbps 100 Mbps
Good performance obtained at both bandwidths,
especially at low bandwidth

Copyright(c) 2011 NTT, corp. All Rights Reserved. 18

Summary

A rapid VM synchronization mechanism is
being developed.

 Logging-replay was implemented in Kemari.
— Traffic/sync reduced by 50%
— Throughput increased by 160%

Future work

« Addressing the problem of disk failure
propagation
— Disk read errors propagate to secondary VM when
primary VM’s disk crashes.

— In other failure cases, we can verify disk
consistency.

 Implementing memory replication with
logging-replay

— Enabling secondary VM to replay disk read events
produced by the primary VM

 Implementing live migration with logging-
replay to improve performance

