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Motivation

VM replication including backend storage is
important
— enables use of shared-nothing architecture
— enhances VM mobility

« However, it heavily degrades VM performance

 Live migration
« Regular sync to avoid
hardware failure
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Our goal and approach

e Goal

— Developing a rapid VM (including backend storage)
synchronization mechanism

e Approach

— logging-replay: The secondary VM replays the disk
I/O events produced by the primary VM.
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How to replicate VM and disk data?

Primary Secondary

Guest | Memory \ ‘ Memory \ Guest
QEMU QEMU
HW HW

- RN

/
IE
\@J =

Copyright(c) 2011 NTT, corp. All Rights Reserved.




How to replicate VM and disk data?
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How to replicate VM and disk data?

Primary

dirty pages

Guest

Memory

/_
\

Secondary

device info
7

—)

‘ Memory \ Guest

I/0 logs

QEMU

......................................

QY

)

QEMU

HW

s
N

Replays the disk
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PN using I/0 logs

* Transfer I/0 logs instead of dirty blocks to the secondary VM
— Transfer VM info(dirty pages and device info) to the secondary VM as usual

« The secondary VM only replays disk write events using I/O logs
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Disk consistency

 Needs to be the same VM memory as the
primary VM’s when secondary VM replays
disk write events

— Secondary VM can’t make the same VM
memory as the primary VM’s

 Should we sync VMs when primary VM
runs disk write events?



Specific event-driven VM synchronization

 Disk write using two kinds of data
— dirty pages and non-dirty pages
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Specific event-driven VM synchronization

 Disk write using two kinds of data
— dirty pages and non-dirty pages
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Specific event-driven VM synchronization

 Disk write using two kinds of data
— dirty pages and non-dirty pages
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Implementation

« Kemari: VM synchronization mechanism
for achieving fault tolerance
— Needs shared disks

« Kemari with logging-replay can become a
shared-nothing architecture
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Architecture based on QEMU/KVM
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« I/O-logging: saves the disk write events’ logs

« I/O-replay: replays the disk write events using I/O logs
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I/O-logging: saves the disk write events’ logs
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e Saves I/0O logs at block layer in
QEMU

— applicable to many device models

* Need to save the following
information to replay disk I/0O
events:

— device name
= to get BlockDriverState structure
— memory page address
= to get disk write data
(memory data transferred already)
— num and location of disk sectors
= to write data
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I/O-Replay: replays the disk write events using I/0O logs

Secondary - Secondary VM requests I/0
Guest OS events using I/0 logs from block-
QEMU layer
Emulator o
« I/O-Replay’s callback function is
e vIrto-bIk invoked when disk write is
finished
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Experimentation

 Experiment items
— Traffic needed to synchronize VMs and disks
— Performance of the primary VM (File I/O) using I0zone
e Techniques implemented in Kemari:
— logging-replay
— dirty-block-copy
e Transferring dirty blocks to secondary VM

 Experimental environment

— Hardware specs:
e« CPU: Quad-core Intel Xeon 2.6GHz X 2
 Network: 1 GbE

— VM specs:

KVM: Linux 2.6.33

QEMU: gemu-0.14.0

Guest OS: Debian lenny w/ virtio-blk
Memory: 1 GB
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« Logging-replay reduces the traffic needed to

synchronize only disks by 99%

Copyright(c) 2011 NTT, corp. All Rights Reserved.

16



Synchronized NW traffic (1 Gbps)
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 Logging-replay reduces average traffic by 50%

« Traffic is as high as around 700 Mbps

— Feature of event-driven synchronization
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File I/O for both bandwidths
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Good performance obtained at both bandwidths,
especially at low bandwidth
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Summary

A rapid VM synchronization mechanism is
being developed.

 Logging-replay was implemented in Kemari.
— Traffic/sync reduced by 50%
— Throughput increased by 160%



Future work

« Addressing the problem of disk failure
propagation
— Disk read errors propagate to secondary VM when
primary VM’s disk crashes.

— In other failure cases, we can verify disk
consistency.

 Implementing memory replication with
logging-replay

— Enabling secondary VM to replay disk read events
produced by the primary VM

 Implementing live migration with logging-
replay to improve performance



