-« rednat

Guest Memory Overcommit

Page hinting, resizing & more

Rik van Riel, Red Hat

KVM Forum 2011



Guest Memory Overcommit

* Why overcommit memory?

* Problems with memory overcommit

* Async pagefault

* Free page hinting

 Memory resizing vs. Transparent hugepages
e Conclusions



Why Overcommit Memory?

Users want CHEAP virtual machines

Prices continuously going down

Migrate providers for a dollar/month/VM savings?
However, they do want it all

Always see all the memory they paid for

Enough CPU available when they need it
Overcommit is the way to cheap

Share power/hardware/... with more users
Hardware is getting cheaper, electricity is not
Our challenge: make it fast



Problems With Memory Overcommit

Memory Is a hon-renewable resource
Secondary. Storage. Is. Really. Slow.

Many millions of CPU cycles in one disk seek
Overcommit is easy

KVM guest is just like a process

Host handles swapping and page faults

Process Iin guest accesses non-resident memory
Entire VCPU stalls until swapin disk 10 is done!
Host swaps guest page cache and free pages



Async Pagefault

Host paging blocks the entire VCPU on swapin

Most swapins are guest processes in sleepable context
Anonymous memory

Page cache

copy_to/from_user

Guest can suspend the faulting process instead
VCPU can run other processes, interrupts, etc
Implemented by Gleb last year and upstream
Reduces the impact of host swapins of guest memory
Still generates disk 1O that slows down others

How to reduce the number of host swapins&outs?



Nested LRU Problem

Three guests HOST MEMORY
Host Is swapping

Host swaps out oldest

guest pages (often free)
Guest re-uses free pages

for new content

Swap 10 due to free memory
Content of free pages could
be discarded

GUEST MEMORY

st ISR




Free Page Hinting

Free pages contain no useful information

The host could throw away free guest pages!
Swapout, KSM, etc
Avoid disk 10 on swapout

Give the guest a fresh page on use

Avoid disk 10 on swapin

Guest needs to inform host what memory is free

Can use a big bitmap

Be careful at state transitions (free->used)



Free Page Hinting Detalls

Keep a large bitmap per guest (or per pgdat)
One bit per (4kB) page
Use arch_free page & arch_alloc_page hooks
Set bit at free time, clear bit at alloc time
Overhead in the guest: touch a bitmap in alloc & free
On the host side, check bitmap
In ksmd, discard unused guest pages
At swapout time, discard unused pages
At swapin time
Give process a fresh page
Free swap space
Skip swap 10
Host side iIs more overhead, but only when memory is tight
Interface may also be usable by eg. a JVM



Free Page Hinting Race Conditions

Swapout & ksmd discard vs. unused->used transition
Check page unused bit in bitmap
Unmap page from guest
Re-check bit in bitmap
If still set, discard page
If now clear, remap the same page into the guest

Hold the right lock in the host to block page faults by the
process, while doing the re-check

Swapin IO avoidance

Can avoid IO if page is touched while the “unused” bit for
the page is still set

Page allocator in guest kernel touches the page, before
clearing the bit



Nested LRU With Free Page Hinting

Many free pages eliminated HOST MEMORY
Swapout & ksmd

Guests now fit in RAM

The used memory...

Swap 10 greatly reduced
We'll never catch them all
But what if the sum of used
memory exceeds RAM?

GUEST MEMORY

Useo. NS




Dynamic Memory Resizing

We can do more than eliminate free memory
Guest has working set, page cache and free
When host is near swapout

Ask each guest to free some memory

Do not shrink guest below minimum size

When a guest is near swapout

Do not shrink memory when asked (or not much)
Ask the host for some memory back

Do not grow guest above maximum size



Dynamic Memory Resizing lllustrated

Ask guests to keep extra HOST MEMORY
memory free when host

needs it

Obey guest min/max size
Avoid even more swap IO
Combine with cgroups for
guest prioritization

Fit more guests per host

GUEST MEMORY

USED CACHE IEEES




To Balloon or not to balloon?

Guest resizing traditionally done through a balloon
Hypercall per freed page (fixable with batching)
Hopeless memory fragmentation

Big problem for Transparent Huge Pages (THP)

Defragmentation would touch more memory

While the host is already under memory pressure

May be better off adjusting the guest free memory targets
Automatically helps defragment memory inside a guest

Good for THP and slab/slub

Free page hinting can be used to physically free unused
guest pages on the host

A lot fewer hypercalls than any balloon implementation



Conclusions

Users want faster, cheaper & more

Whoever can provide that will be the industry standard

Needs modifications to both guest and host to work best

KVM already provides cheaper & more

Host swapping

Async pagefault reduces impact of host swapping

To go faster, we must reduce the 10

Skip 10 on free pages

Resize the amount of used memory in a guest
Reduce if lightly used, increase if heavily used
Depending on memory pressure in host

Your ideas here...



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

