
Guest Memory Overcommit

Page hinting, resizing & more

Rik van Riel, Red Hat

KVM Forum 2011



Guest Memory Overcommit
● Why overcommit memory? 
● Problems with memory overcommit
● Async pagefault
● Free page hinting
● Memory resizing vs. Transparent hugepages
● Conclusions

 



Why Overcommit Memory?
 Users want CHEAP virtual machines
● Prices continuously going down
● Migrate providers for a dollar/month/VM savings?

 However, they do want it all
● Always see all the memory they paid for
● Enough CPU available when they need it

 Overcommit is the way to cheap
● Share power/hardware/... with more users
● Hardware is getting cheaper, electricity is not

 Our challenge: make it fast



Problems With Memory Overcommit
 Memory is a non-renewable resource
 Secondary. Storage. Is. Really. Slow.
● Many millions of CPU cycles in one disk seek

 Overcommit is easy
● KVM guest is just like a process
● Host handles swapping and page faults

 Process in guest accesses non-resident memory
● Entire VCPU stalls until swapin disk IO is done!

 Host swaps guest page cache and free pages



Async Pagefault
 Host paging blocks the entire VCPU on swapin
 Most swapins are guest processes in sleepable context
● Anonymous memory
● Page cache
● copy_to/from_user

 Guest can suspend the faulting process instead
● VCPU can run other processes, interrupts, etc

 Implemented by Gleb last year and upstream
 Reduces the impact of host swapins of guest memory
● Still generates disk IO that slows down others
● How to reduce the number of host swapins&outs?



Nested LRU Problem
 Three guests
 Host is swapping
 Host swaps out oldest

guest pages (often free)
 Guest re-uses free pages

for new content
 Swap IO due to free memory
 Content of free pages could

be discarded

HOST MEMORYHOST MEMORY

SWAPSWAP

USED FREE
GUEST MEMORY



Free Page Hinting
 Free pages contain no useful information
● The host could throw away free guest pages!

● Swapout, KSM, etc
● Avoid disk IO on swapout

● Give the guest a fresh page on use
● Avoid disk IO on swapin

 Guest needs to inform host what memory is free
● Can use a big bitmap
● Be careful at state transitions (free->used)



Free Page Hinting Details
 Keep a large bitmap per guest (or per pgdat)
● One bit per (4kB) page
● Use arch_free_page & arch_alloc_page hooks

● Set bit at free time, clear bit at alloc time
● Overhead in the guest: touch a bitmap in alloc & free

 On the host side, check bitmap
● In ksmd, discard unused guest pages
● At swapout time, discard unused pages
● At swapin time

● Give process a fresh page
● Free swap space
● Skip swap IO

 Host side is more overhead, but only when memory is tight
 Interface may also be usable by eg. a JVM



Free Page Hinting Race Conditions
 Swapout & ksmd discard vs. unused->used transition
● Check page unused bit in bitmap
● Unmap page from guest
● Re-check bit in bitmap

● If still set, discard page
● If now clear, remap the same page into the guest

● Hold the right lock in the host to block page faults by the 
process, while doing the re-check

 Swapin IO avoidance
● Can avoid IO if page is touched while the “unused” bit for 

the page is still set
● Page allocator in guest kernel touches the page, before 

clearing the bit



Nested LRU With Free Page Hinting
 Many free pages eliminated
● Swapout & ksmd

 Guests now fit in RAM
● The used memory...

 Swap IO greatly reduced
● We'll never catch them all

 But what if the sum of used

memory exceeds RAM?

HOST MEMORYHOST MEMORY

SWAPSWAP

USED FREE
GUEST MEMORY



Dynamic Memory Resizing
 We can do more than eliminate free memory
● Guest has working set, page cache and free

 When host is near swapout
● Ask each guest to free some memory
● Do not shrink guest below minimum size

 When a guest is near swapout
● Do not shrink memory when asked (or not much)
● Ask the host for some memory back
● Do not grow guest above maximum size



Dynamic Memory Resizing Illustrated

 Ask guests to keep extra

memory free when host

needs it
 Obey guest min/max size
 Avoid even more swap IO
 Combine with cgroups for

guest prioritization
 Fit more guests per host

HOST MEMORYHOST MEMORY

SWAPSWAP

USED FREE
GUEST MEMORY

CACHE



To Balloon or not to balloon?
 Guest resizing traditionally done through a balloon
● Hypercall per freed page (fixable with batching)
● Hopeless memory fragmentation

● Big problem for Transparent Huge Pages (THP)
● Defragmentation would touch more memory

● While the host is already under memory pressure
 May be better off adjusting the guest free memory targets
● Automatically helps defragment memory inside a guest

● Good for THP and slab/slub
● Free page hinting can be used to physically free unused 

guest pages on the host
● A lot fewer hypercalls than any balloon implementation 



Conclusions
 Users want faster, cheaper & more
● Whoever can provide that will be the industry standard
● Needs modifications to both guest and host to work best

 KVM already provides cheaper & more
● Host swapping
● Async pagefault reduces impact of host swapping

 To go faster, we must reduce the IO
● Skip IO on free pages
● Resize the amount of used memory in a guest

● Reduce if lightly used, increase if heavily used
● Depending on memory pressure in host

 Your ideas here...


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

