
VP, Engineering

bryan@joyent.com

Bryan Cantrill

Experiences Porting
KVM to SmartOS

@bcantrill

mailto:rod@joyent.com
mailto:rod@joyent.com

WTF is SmartOS?

• illumos-derived OS that is the foundation of both
Joyentʼs public cloud and SmartDataCenter product

• As an illumos derivative, has several key features:

• ZFS: Enterprise-class copy-on-write filesystem featuring
constant time snapshots, writable clones, built-in
compression, checksumming, volume management, etc.

• DTrace: Facility for dynamic, ad hoc instrumentation of
production systems that supports in situ data aggregation,
user-level instrumentation, etc. — and is absolutely safe

• OS-based virtualization (Zones): Entirely secure virtual OS
instances offering hardware performance, high multi-tenancy

• Network virtualization (Crossbow): Virtual NIC Infrastructure
for easy bandwidth management and resource control

KVM on SmartOS?

• Despite its rich feature-set, SmartOS was missing an
essential component: hardware virtualization

• Thanks to Intel and AMD, hardware virtualization can
now be remarkably high performing...

• We firmly believe that the best hypervisor is the
operating system — anyone attempting to implement a
“thin” hypervisor will end up retracing OS history

• KVM shares this vision — indeed, pioneered it!

• Moreover, KVM is best-of-breed: highly competitive
performance and a community with critical mass

• Imperative was clear: needed to port KVM to SmartOS!

Constraining the port

• For business and resourcing reasons, elected to focus
exclusively on Intel VT-x with EPT...

• ...but to not make decisions that would make later AMD
SVM work impossible

• Only ever interested in x86-64 host support

• Only ever interested in x86 and x86-64 guests

• Willing to diverge as needed to support illumos
constructs or coding practices…

• ...but wanted to maintain compatibility with QEMU/KVM
interface as much as possible

Starting the port

• KVM was (rightfully) not designed to be portable in any
real sense — it is specific to Linux and Linux facilities

• Became clear that emulating Linux functionality would
be insufficient — there is simply too much divergence

• Given the stability of KVM in Linux 2.6.34, we felt
confident that we could diverge from the Linux
implementation — while still being able to consume and
contribute patches as needed

• Also clear that just getting something to compile would
be a significant (and largely serial) undertaking

• Joyent engineer Max Bruning started on this in late fall...

Getting to successful compilation

• To expedite compilation, unported blocks of code would
be “XXXʼd out” by being enclosed in #ifdef XXX

• To help understand when/where we hit XXXʼd code
paths, we put a special DTrace probe with __FILE__
and __LINE__ as arguments in the #else case

• We could then use simple DTrace enablings to
understand what of these cases we were hitting to
prioritize work:
kvm-xxx
{
 @[stringof(arg0), probefunc, arg1] = count();
}

tick-10sec
{
 printf("%-12s %-40s %-8s %8s\n",
 "FILE", "FUNCTION", "LINE", "COUNT");
 printa("%20s %8d %@8d\n", @);

}

Accelerating the port

• By late March, Max could launch a virtual machine that
could run in perpetuity without panicking…

• ...but also was not making any progress booting

• At this point, the work was more readily parallelized:
Joyentʼs Robert Mustacchi and I joined Max in April

• Added tooling to understand guest behavior, e.g.:

• MDB support to map guest PFNs to QEMU VAs

• MDB support for 16-bit disassembly (!)

• DTrace probes on VM entry/exit and the ability to pull VM
state in DTrace with a new vmregs[] variable

Making progress...

• To make forward progress, we would debug the issue
blocking us (inducing either guest or host panic)…

• ...which was usually due to a piece that hadnʼt yet been
ported or re-implemented

• We would implement that piece (usually eliminating an
XXXʼd block in the process), and debug the next issue

• The number of XXXʼs over time tell the tale...

The tale of the port

Port milestones

Boots KMDB

Boots Linux

Boots Windows

Notable bugs

• In the course of this port, we did not discover any bug
that one would call a bug in KVM — itʼs very solid!

• Our bugs were (essentially) all self-inflicted, e.g.:

• We erroneously configured QEMU such that both QEMU and
KVM thought they were responsible for the 8254/8259!

• We use a per-CPU GSBASE where Linux does not — Linux
KVM doesnʼt have any reason to reload the hostʼs GSBASE
on CPU migration, but not doing so induces host GSBASE
corruption: two physical CPUs have the same CPU pointer
(one believes itʼs the other), resulting in total mayhem

• We reimplemented the FPU save code in terms of our native
equivalent — and introduced a nasty corruption bug in the
process by plowing TS in CR0!

Port performance

• Not surprisingly, our port performs at baremetal speeds
for entirely CPU-bound workloads:

• But it took us a surprising amount of time to get to this
result: due to dynamic overclocking, SmartOS KVM was
initially operating 5% faster than baremetal!

• Our port of KVM seems to at least be in the hunt on
other workloads, e.g.:

Port performance

Port status

• Port is publicly available:

• Github repo for KVM itself:
 https://github.com/joyent/illumos-kvm

• Github repo for our branch of QEMU 0.14.1:
 https://github.com/joyent/illumos-kvm-cmd

• illumos-kvm-cmd repo contains minor QEMU 0.14.1
patches to support our port, all of which we intend to
upstream

• Within its scope, this port is at or near production quality

• Worthwhile to discuss the limitations of our port, the
divergences of our port from Linux KVM, and the
enhancements to KVM that our port allows...

https://github.com/joyent/illumos-kvm
https://github.com/joyent/illumos-kvm
https://github.com/joyent/illumos-kvm-cmd
https://github.com/joyent/illumos-kvm-cmd

Limitation: guest memory is locked down

• As a cloud provider, we have something of an opinion
on this: overselling memory is only for idle workloads

• In our experience, the dissatisfaction from QoS
variability induced by memory oversell is not paid for by
the marginal revenue of that oversell

• We currently lock down guest memory; failure to lock
down memory will result in failure to start

• For those high multi-tenancy environments, we believe
that hardware is the wrong level at which to virtualize...

Limitation: no memory deduplication

• We donʼt currently have an analog to the kernel same-
page mapping (KSM) found in Linux

• This is technically possible, but we donʼt see an acute
need (for the same reason we lock down guest memory)

• We are interested to hear experiences with this:

• What kind of memory savings does one see?

• Is one kind of guest (Windows?) more likely to see savings?

• What kind of performance overhead from page scanning?

Limitation: no nested virtualization

• We donʼt currently support nested virtualization — and
weʼre not sure that weʼre ever going to implement it

• While for our own development purposes, we would like
to see VMware Fusion support nested virtualization, we
donʼt see an acute need to support it ourselves

• Would be curious to hear about experiences with nested
virtualization; is it being used in production, or is it
primarily for development?

Divergence: User/kernel interface

• To minimize patches floated on QEMU, wanted to
minimize any changes to the user/kernel interface

• ...but we have no anon_inode_getfd() analog

• This is required to implement the model of a 1-to-1
mapping between a file descriptor and a VCPU

• Added a new KVM_CLONE ioctl that makes the driver
state in the operated-upon instance point to another

• To create a VCPU, QEMU (re)opens /dev/kvm, and
calls KVM_CLONE on the new instance, specifying the
extant instance

Divergence: Context ops

• illumos has the ability to install context ops that are
executed before and after a thread is scheduled on CPU

• Context ops were originally implemented to support
CPU performance counter virtualization

• Context ops are installed with installctx()

• This facility proved essential — we use it to perform the
equivalent of kvm_sched_in()/kvm_sched_out()

Divergence: Timers

• illumos has arbitrary resolution interval timer support via
the cyclic subsystem

• Cyclics can be bound to a CPU or processor set and
can be configured to fire at different interrupt levels

• While originally designed to be a high resolution interval
timer facility (the system clock is implemented in terms
of it), cyclics may also be used as a dynamically
reprogrammable one-shots

• All KVM timers are implemented as cyclics

• We do not migrate cyclics when a VCPU migrates from
one CPU to another, choosing instead to poke the target
CPU from the cyclic handler

Enhancement: ZFS

• Strictly speaking, we have done nothing specifically for
ZFS: running KVM on a ZFS volume (a zvol) Just Works

• But the presence of ZFS allows for KVM enhancements:

• Constant time cloning allows for nearly instant provisioning
of new KVM guests (assuming that the reference image is
already present)

• The ZFSʼs unified adaptive replacement cache (ARC) allows
for guest I/O to be efficiently cached in the host — resulting
in potentially massive improvements in random I/O
(depending, of course, on locality)

• We believe that ZFS remote replication can provide an
efficient foundation for WAN-based cloning and migration

Enhancement: OS Virtualization

• illumos has deep support for OS virtualization

• While our implementation does not require it, we run
KVM guests in a local zone, with the QEMU process as
the only process

• This was originally for reasons of accounting (we use
the zone as the basis for QoS, resource management,
I/O throttling, billing, instrumentation, etc.)…

• ...but given the recent KVM vulnerabilities, it has
become a matter of security

• OS virtualization neatly containerizes QEMU and
drastically reduces attack surface for QEMU exploits

Enhancement: Network virtualization

• illumos has deep support for network virtualization

• We create a virtual NIC (VNIC) per KVM guest

• We wrote simple glue to connect this to virtio — and
have been able to push 1 Gb line to/from a KVM guest

• VNICs give us several important enhancements, all with
minimal management overhead:

• Anti-spoofing confines guests to a specified IP (or IPs)

• Flow management allows guests to be capped at specified
levels of bandwidth — essential in overcommitted networks

• Resource management allows for observability into per-
VNIC (and thus, per-guest) throughput from the host

Enhancement: Kernel statistics

• illumos has the kstat facility for kernel statistics

• We reimplemented kvm_vcpu_stat as a kstat

• We added a kvmstat tool to illumos that consumes these
kstats, displaying them per-second and per-VCPU

• For example, one second of kvmstat output with two
VMs running — one idle 2 VCPU Linux guest, with one
booting 4 VCPU SmartOS guest:

 pid vcpu | exits : haltx irqx irqwx iox mmiox | irqs emul eptv
 4668 0 | 23 : 6 0 0 1 0 | 6 16 0
 4668 1 | 25 : 6 1 0 1 0 | 6 16 0
 5026 0 | 17833 : 223 2946 707 106 0 | 3379 13315 0
 5026 1 | 18687 : 244 2761 512 0 0 | 3085 14803 0
 5026 2 | 15696 : 194 3452 542 0 0 | 3568 11230 0
 5026 3 | 16822 : 244 2817 487 0 0 | 3100 12963 0

Enhancement: DTrace

• As of QEMU 0.14, QEMU has DTrace probes — we lit
those up on illumos

• Added a bevy of SDT probes to KVM itself, including all
of the call-sites of the trace_*() routines

• Added vmregs[] variable that queries current VMCS,
allowing for guest behavior to be examined

• Can all be enabled dynamically and safely, and
aggregated on an arbitrary basis (e.g., per-VCPU, per-
VM, per-CPU, etc.)

• Pairs well with kvmstat to understand workload
characteristics in production deployments

Enhancement: DTrace, cont.

• Example D script:
kvm-guest-exit
{
 @[pid, tid, strexitno[vmregs[VMX_VM_EXIT_REASON]] = count();
}

tick-1sec
{
 printf("%10s %10s %-50s %s\n",
 "PID", "TID", "REASON", "COUNT");
 printa("%10d %10d %-50s %@d\n", @);
 printf("\n");
 clear(@);
}

• e.g., output from fork()/exit()-heavy workload:

 PID TID REASON COUNT
 3949 3 EXIT_REASON_CR_ACCESS 0
 3949 3 EXIT_REASON_HLT 0
 3949 3 EXIT_REASON_IO_INSTRUCTION 2
 3949 3 EXIT_REASON_EXCEPTION_NMI 11
 3949 3 EXIT_REASON_EXTERNAL_INTERRUPT 14
 3949 3 EXIT_REASON_APIC_ACCESS 202
 3949 3 EXIT_REASON_CPUID 8440 WTF?!

Enhancement: DTrace, cont.

• Orthogonal to this work, we have developed a real-time
analytics framework that instruments the cloud using
DTrace and visualizes the result

• We have extended this facility to the new DTrace probes
in our KVM port

• We have only been experimenting with this very
recently, but the results have been fascinating!

• For example...

Enhancement: Visualizing DTrace on KVM

• Observing ext3 write offsets in a logical volume on a
workload that creates and removes a 3 GB file:

Enhancement: Visualizing DTrace on KVM

• Decomposing by guest CR3 and millisecond offset
within-the-second, sampled at 99 hertz with two
compute-bound processes:

Enhancement: Visualizing DTrace on KVM

• Same view, but now sampled at 999 hertz — and with
one of the compute-bound processes reniced:

Enhancement: Visualizing DTrace on KVM

• Same view, same sample frequency — but horsing
around with nice values:

Enhancement: Visualizing DTrace on KVM

• Interrupt requests decomposed by IRQ vector and offset
within-the-second:

Engaging the community

• We are very excited to engage the KVM community;
potential areas of collaboration:

• Working on KVM performance. With DTrace, we have much
better visibility into guest behavior; it seems possible (if not
likely!) that resulting improvements to KVM will carry from
one host system to the other

• Collaborating on testing. We would love to participate in
automated KVM testing infrastructure; we dream of a farm of
oddball ISOs and the infrastructure to boot and execute
them!

• Collaborating on benchmarking. We have not examined
SPECvirt_sc2010 in detail, but would like to work with the
community to develop standard benchmarks

Thank you!

• Josh Wilsdon and Rob Gulewich of Joyent for their
instrumental assistance in this effort

• Brendan Gregg of Joyent for examining the performance
of KVM — and for his tenacity in discovering the effects
of dynamic overclocking!

• Fabrice Bellard for lighting the path with QEMU

• Intel for a rippinʼ fast CPU (+ EPT!) in Nehalem

• Avi Kivity and team for putting it all together with KVM!

• The illumos community for their enthusiastic support

