©Joyent

Experiences Porting
KVM to SmartOS

bryan@joyent.com

mailto:rod@joyent.com
mailto:rod@joyent.com

WTF is SmartO0S? ©Joyent

* illumos-derived OS that is the foundation of both
Joyent’s public cloud and SmartDataCenter product

* As an illumos derivative, has several key features:

* ZFS: Enterprise-class copy-on-write filesystem featuring
constant time snapshots, writable clones, built-in
compression, checksumming, volume management, etc.

e DTrace: Facility for dynamic, ad hoc instrumentation of
production systems that supports in situ data aggregation,
user-level instrumentation, etc. — and is absolutely safe

* OS-based virtualization (Zones): Entirely secure virtual OS
iInstances offering hardware performance, high multi-tenancy

* Network virtualization (Crossbow): Virtual NIC Infrastructure
for easy bandwidth management and resource control

KVM on SmartOS? wJoyent

» Despite its rich feature-set, SmartOS was missing an
essential component: hardware virtualization

* Thanks to Intel and AMD, hardware virtualization can
now be remarkably high performing...

* We firmly believe that the best hypervisor is the
operating system — anyone attempting to implement a
“thin” hypervisor will end up retracing OS history

* KVM shares this vision — indeed, pioneered it!

* Moreover, KVM is best-of-breed: highly competitive
performance and a community with critical mass

* Imperative was clear: needed to port KVM to SmartOS!

Constraining the port wJoyent

» For business and resourcing reasons, elected to focus
exclusively on Intel VT-x with EPT...

 ...but to not make decisions that would make later AMD
SVM work impossible

* Only ever interested in x86-64 host support

* Only ever interested in x86 and x86-64 guests

» Willing to diverge as needed to support illumos
constructs or coding practices...

» ...but wanted to maintain compatibility with QEMU/KVM
interface as much as possible

Starting the port wJoyent

* KVM was (rightfully) not designed to be portable in any
real sense — it is specific to Linux and Linux facilities

» Became clear that emulating Linux functionality would
be insufficient — there is simply too much divergence

 Given the stability of KVM in Linux 2.6.34, we felt
confident that we could diverge from the Linux
implementation — while still being able to consume and
contribute patches as needed

 Also clear that just getting something to compile would
be a significant (and largely serial) undertaking

» Joyent engineer Max Bruning started on this in late fall...

Getting to successful compilation ©Joyent

* To expedite compilation, unported blocks of code would
be “XXX’d out” by being enclosed in #1fdef XXX

* To help understand when/where we hit XXX’d code
paths, we put a special DTrace probe with __FILE__
and __LINE__ as arguments in the #else case

» We could then use simple DTrace enablings to
understand what of these cases we were hitting to
prioritize work:

kvm-XxXxX

{
¥

tick-10sec
{

@[stringof(arg0), probefunc, argl] = count();

printf("%-12s %-40s %-8s %8s\n",
n FILEH , n FUNCTION" , IILINEII , llCOUNT") ;
printa("%20s %8d %@8d\n", @);

Accelerating the port ©Joyent

» By late March, Max could launch a virtual machine that
could run in perpetuity without panicking...

* ...but also was not making any progress booting

At this point, the work was more readily parallelized:
Joyent’s Robert Mustacchi and | joined Max in April

» Added tooling to understand guest behavior, e.g.:
 MDB support to map guest PFNs to QEMU VAs

 MDB support for 16-bit disassembly (!)

* DTrace probes on VM entry/exit and the ability to pull VM
state in DTrace with a new vmregs [] variable

Making progress... wJoyent

» To make forward progress, we would debug the issue
blocking us (inducing either guest or host panic)...

* ...which was usually due to a piece that hadn’t yet been
ported or re-implemented

* We would implement that piece (usually eliminating an
XXX'd block in the process), and debug the next issue

 The number of XXX’s over time tell the tale...

The tale of the port ©Joyent

Number of XXXs in KVM

m r '] '] 1] '] ' ']] ' '] '] ' ' '] ' '] ' '] ')] ' '] .|]) ' |] ""
#ifdef XXX ——
Commented XXX ------

Occurences of XXX
|

100 -

' 1 ' ' ' ' ' ' 1 l ' ' l ' ' l ' 1 ' ' ' ' ' ' ' ' 1 ' ' ' l ' l_’
0s8/01 09/01 10/01 11/01 12/01 01/01 02/01 03/01 04/01 05/001 06/01 07/01 08/01 09/01

Date

Port milestones ©Joyent

Number of XXXs in KVM

4m r" '] '] 1] '] ' ']] ' '] l] ' ' '] ' '] ' '] . '] ' '] l]) ' |] "‘
#ifdef XXX —
Commented XXX ------
350 - Boots KMDB ~
Boots Linux

300 - -
Boots Windows

250 - — -

Occurences of XXX
|

150 -)

100 -]
Y T T =
oL+ ¢ N
08/01 09/01 10/01 11/01 12/01 01/01 02/01 03/01 04/01 0501 06/01 07/01 08/01 09/01

Date

Notable bugs ©Joyent

¢ In the course of this port, we did not discover any bug
that one would call a bug in KVM — it's very solid!

» Our bugs were (essentially) all self-inflicted, e.g.:

* We erroneously configured QEMU such that both QEMU and
KVM thought they were responsible for the 8254/8259!

* We use a per-CPU GSBASE where Linux does not — Linux
KVM doesn’t have any reason to reload the host’'s GSBASE
on CPU migration, but not doing so induces host GSBASE
corruption: two physical CPUs have the same CPU pointer
(one believes it’s the other), resulting in total mayhem

* We reimplemented the FPU save code in terms of our native
equivalent — and introduced a nasty corruption bug in the
process by plowing TS in CRO!

Port performance ©Joyent

* Not surprisingly, our port performs at baremetal speeds
for entirely CPU-bound workloads:

sysbench cpu (max-prime 100000)

280 B Baremetal

B Linux KVM

B SmartOS KVM
210

140

runtime (s)

70

0

» But it took us a surprising amount of time to get to this
result: due to dynamic overclocking, SmartOS KVM was
initially operating 5% faster than baremetal!

Port performance ©Joyent

* Our port of KVM seems to at least be in the hunt on
other workloads, e.qg.:

sysbench mysql oltp
1600

B Baremetal
B Linux KVM
! B SmartOS KVM
1200
o
e
2
O
S 800
©
175}
=
5
400
0
A ;- 9 1 9 AA AD AD X1 A\Q

Port status ©Joyent

» Port is publicly available:

e Github repo for KVM itself:
https://github.com/joyent/111lumos-kvm

* Github repo for our branch of QEMU 0.14.1:
https://github.com/joyent/111lumos-kvm-cmd

* i1lumos-kvm-cmd repo contains minor QEMU 0.14.1

patches to support our port, all of which we intend to
upstream

» Within its scope, this port is at or near production quality

* Worthwhile to discuss the limitations of our port, the
divergences of our port from Linux KVM, and the
enhancements to KVM that our port allows...

https://github.com/joyent/illumos-kvm
https://github.com/joyent/illumos-kvm
https://github.com/joyent/illumos-kvm-cmd
https://github.com/joyent/illumos-kvm-cmd

Limitation: guest memory is locked down @Joyent

* As a cloud provider, we have something of an opinion
on this: overselling memory is only for idle workloads

* In our experience, the dissatisfaction from QoS
variability induced by memory oversell is not paid for by
the marginal revenue of that oversell

* We currently lock down guest memory; failure to lock
down memory will result in failure to start

* For those high multi-tenancy environments, we believe
that hardware is the wrong level at which to virtualize...

Limitation: no memory deduplication ©Joyent

* We don’t currently have an analog to the kernel same-
page mapping (KSM) found in Linux

* This is technically possible, but we don’t see an acute
need (for the same reason we lock down guest memory)

* We are interested to hear experiences with this:

* What kind of memory savings does one see?
* |s one kind of guest (Windows?) more likely to see savings?

* What kind of performance overhead from page scanning?

Limitation: no nested virtualization ©Joyent

« We don’t currently support nested virtualization — and
we’re not sure that we’re ever going to implement it

* While for our own development purposes, we would like
to see VMware Fusion support nested virtualization, we
don’t see an acute need to support it ourselves

* Would be curious to hear about experiences with nested
virtualization; is it being used in production, or is it
primarily for development?

Divergence: User/kernel interface & Joyent

* To minimize patches floated on QEMU, wanted to
minimize any changes to the user/kernel interface

- ...but we have no anon_inode_getfd() analog

* This is required to implement the model of a 1-to-1
mapping between a file descriptor and a VCPU

* Added a new KVM_CLONE ioctl that makes the driver
state in the operated-upon instance point to another

 To create a VCPU, QEMU (re)opens /dev/kvm, and
calls KVM_CLONE on the new instance, specifying the
extant instance

Divergence: Context ops ©Joyent

* illumos has the ability to install context ops that are
executed before and after a thread is scheduled on CPU

« Context ops were originally implemented to support
CPU performance counter virtualization

» Context ops are installed with 1nstal lctx()

 This facility proved essential — we use it to perform the
equivalent of kvm_sched_1n()/kvm_sched_out ()

Divergence: Timers wJoyent

* illumos has arbitrary resolution interval timer support via
the cyclic subsystem

 Cyclics can be bound to a CPU or processor set and
can be configured to fire at different interrupt levels

* While originally designed to be a high resolution interval
timer facility (the system clock is implemented in terms
of it), cyclics may also be used as a dynamically
reprogrammable one-shots

« All KVM timers are implemented as cyclics

» We do not migrate cyclics when a VCPU migrates from
one CPU to another, choosing instead to poke the target
CPU from the cyclic handler

Enhancement: ZFS ©Joyent

» Strictly speaking, we have done nothing specifically for
ZFS: running KVM on a ZFS volume (a zvol) Just Works

* But the presence of ZFS allows for KVM enhancements:

» Constant time cloning allows for nearly instant provisioning
of new KVM guests (assuming that the reference image is
already present)

* The ZFS’s unified adaptive replacement cache (ARC) allows
for guest I/0O to be efficiently cached in the host — resulting
in potentially massive improvements in random 1/O
(depending, of course, on locality)

* We believe that ZFS remote replication can provide an
efficient foundation for WAN-based cloning and migration

Enhancement: OS Virtualization wJoyent

* illumos has deep support for OS virtualization

« While our implementation does not require it, we run
KVM guests in a local zone, with the QEMU process as
the only process

» This was originally for reasons of accounting (we use
the zone as the basis for QoS, resource management,
/O throttling, billing, instrumentation, etc.)...

* ...but given the recent KVM vulnerabilities, it has
become a matter of security

» OS virtualization neatly containerizes QEMU and
drastically reduces attack surface for QEMU exploits

Enhancement: Network virtualization ©Joyent

* illumos has deep support for network virtualization
« We create a virtual NIC (VNIC) per KVM guest

* We wrote simple glue to connect this to virtio — and
have been able to push 1 Gb line to/from a KVM guest

* VNICs give us several important enhancements, all with
minimal management overhead:

* Anti-spoofing confines guests to a specified IP (or IPs)

* Flow management allows guests to be capped at specified
levels of bandwidth — essential in overcommitted networks

* Resource management allows for observability into per-
VNIC (and thus, per-guest) throughput from the host

Enhancement: Kernel statistics ©Joyent

* illumos has the kstat facility for kernel statistics
« We reimplemented kvm_vcpu_stat as a kstat

* We added a kvmstat tool to illumos that consumes these
kstats, displaying them per-second and per-VCPU

* For example, one second of kvmstat output with two
VMs running — one idle 2 VCPU Linux guest, with one
booting 4 VCPU SmartOS guest:

pid vcpu | exits : haltx irgx 1rgwx 10X mmiox | 1rgs emu | eptv
4668 0 | 23 6 0 0 1 0 | 6 16 0
4668 1 | 25 : 6 1 0 1 0 | 6 16 0
5026 0 | 17833 : 223 2946 707 106 0 | 3379 13315 0
5026 1 | 18687 : 244 2761 512 0 0 | 3085 14803 0
5026 2 | 15696 : 194 3452 542 0 0 | 3568 11230 0
5026 3 | 16822 : 244 2817 487 0 0 | 3100 12963 0

Enhancement: DTrace wJoyent

« As of QEMU 0.14, QEMU has DTrace probes — we lit
those up on illumos

» Added a bevy of SDT probes to KVM itself, including all
of the call-sites of the trace_* () routines

- Added vmregs [] variable that queries current VMCS,
allowing for guest behavior to be examined

« Can all be enabled dynamically and safely, and
aggregated on an arbitrary basis (e.g., per-VCPU, per-
VM, per-CPU, etc.)

» Pairs well with kvmstat to understand workload
characteristics in production deployments

Enhancement: DTrace, cont. ©Joyent

* Example D script:

kvm-guest-exit

{
@[pid, tid, strexitno[vmregs[VMX_VM_EXIT_REASON]] = count();
}
tick-1sec
{
printf("%10s %10s %-50s %s\n",

"PID", "TID", "REASON", "COUNT");
printa("%10d %10d %-50s %@d\n", @);
printf("\n");
clear(@);

}

* e.g., output from fork ()/exit()-heavy workload:

PID TID REASON COUNT

3949 3 EXIT_REASON_CR_ACCESS 0

3949 3 EXIT_REASON_HLT 0

3949 3 EXIT_REASON_IO_INSTRUCTION 2

3949 3 EXIT_REASON_EXCEPTION_NMI 11

3949 3 EXIT_REASON_EXTERNAL_INTERRUPT 14

3949 3 EXIT_REASON_APIC_ACCESS 202

3949 3 EXIT_REASON_CPUID 8440 «— \WTE?!

Enhancement: DTrace, cont. ©Joyent

» Orthogonal to this work, we have developed a real-time
analytics framework that instruments the cloud using
DTrace and visualizes the result

* We have extended this facility to the new DTrace probes
in our KVM port

* We have only been experimenting with this very
recently, but the results have been fascinating!

* For example...

Enhancement: Visualizing DTrace on KVM ©@Joyent

» Observing ext3 write offsets in a logical volume on a
workload that creates and removes a 3 GB file:

Virtual Machine: |/O operations decomposed by operation type and offset
" server hostname |+ | Equal %] (Submit Query)
OPERATION TYPE &2/ @@ COLORBY: ﬂ RANKT’Tj ‘ ”ﬂ GRANULARITY -

N—

r
|

-

X-axis: Time, in 1 second increments Displaying offset up to 5.59 GB

[llIsolate selected
[Exclude selected

Enhancement: Visualizing DTrace on KVM ©@Joyent

» Decomposing by guest CR3 and millisecond offset
within-the-second, sampled at 99 hertz with two
compute-bound processes:

Virtual Machine: thread samples decomposed by VM MMU Context and subsecond offset predicated by zone name == @
$217a591-6a82-4591-8b7a-98394 1bfed87
' server hostname 4] Equal 4] (Submit Query)
VM MMU CONTEXT akly Q@ COLORBY: FRANK LINEAR| GRANULARITY ~
() 0x1df7c000
() 0x6363000
(0 0x6619000

() Oxffffffod2bb83540

() Oxfiffffod2bb88080
() Oxffffffod2bb8cacd
() Oxffffff0d2bb8f500
() OxFF0d2bb92040 .
Cr X-axis: Time, in 1 second increments Displaying subsecond offset up to 1.02 s
(" Exclude selected
Distribution details at 20:40:36 GMT-0800 (PST) 528 ms - 551 ms
0x67dd000 1
@ 0x6768000 1

Total 2

Enhancement: Visualizing DTrace on KVM OJogent

« Same view, but now sampled at 999 hertz — and with
one of the compute-bound processes reniced:

Virtual Machine: thread samples decomposed by VM MMU context and subsecond offset predicated by zone name == n

5217a591-6a82-4591-8b7a-983941bfe487
(Submit Query)

B

4|m| s @@ COLORBY: [RANK LINEAR GRANULARITY .

server hostname '+ | Equal

VM MMU CONTEXT

() 0x1df7c000
() 0x58ed000
() 0x5¢3f000

() 0x5d32000
() 0x5d33000
() 0x66c6000

(] 0x67ef000

() 0x6d69000

X-axis: Time, in 1 second increments Displaying subsecond offset up to 423 ms

Enhancement: Visualizing DTrace on KVM QJogent

« Same view, same sample frequency — but horsing
around with nice values:

Virtual Machine: thread samples decomposed by VM MMU context and subsecond offset predicated by zone name == n

5217a591-6a82-4591-8b7a-983941bfe487
(Submit Query)

_
«l®ls» @@ COLORBY: GRANULARITY *

" server hostname '+ | Equal

VM MMU CONTEXT

() 0x119¢60000
() 0x11a3a4000
() 0x1df7c000
() 0x58ed000
(] 0x5d32000
() 0x66c6000
(] 0x66f5000

(] 0x6755000

X-axis: Time, in 1 second increments Displaying subsecond offset up to 423 ms

Enhancement: Visualizing DTrace on KVM ©@Joyent

* Interrupt requests decomposed by IRQ vector and offset
within-the-second:

Virtual Machine: Interrupt Requests decomposed by subsecond offset and IRQ Vector n
" server hostname '+ | Equal k4 (Submit Query)
SUBSECOND OFFSET 4|l @@ COLORBY: m [EAR GRANULARITY v

[llsolate selected
[Exclude selected

X-axis: Time, in 1 second increments Displaying subsecond offset up to 1.02 s

Engaging the community ©Joyent

* We are very excited to engage the KVM community;
potential areas of collaboration:

* Working on KVM performance. With DTrace, we have much
better visibility into guest behavior; it seems possible (if not
likely!) that resulting improvements to KVM will carry from
one host system to the other

* Collaborating on testing. We would love to participate in
automated KVM testing infrastructure; we dream of a farm of
oddball ISOs and the infrastructure to boot and execute
them!

* Collaborating on benchmarking. We have not examined
SPECvirt_sc2010 in detail, but would like to work with the
community to develop standard benchmarks

Thank you! wJoyent

» Josh Wilsdon and Rob Gulewich of Joyent for their
iInstrumental assistance in this effort

» Brendan Gregg of Joyent for examining the performance
of KVM — and for his tenacity in discovering the effects
of dynamic overclocking!

 Fabrice Bellard for lighting the path with QEMU
* Intel for a rippin’ fast CPU (+ EPT!) in Nehalem
* Avi Kivity and team for putting it all together with KVM!

* The illumos community for their enthusiastic support

