KVM Forum 2011

Anthony Liguori — aliguori@us.ibm.com

IBM Linux Technology Center

Aug 2011

QAPI, QCFG, and Code Gen

e QAPI Is a framework to move QEMU to the next
level of feature, function, and robustness.

« To fully understand QAPI, we need to
understand what's holding us back...

Good Bones

« We've gained a lot of weight over the years in
the form of features

 Features aren't necessarily bad for you, but we

have a particular appetite for salty, deep fried
features.

« We're growing so fast, and are so popular, that

we simply don't have time to exercise and eat
healthy.

It's catching up with us

 Native KVM Tools is the doctor calling. We're
on the verge of developing software type Il
diabetes

 Developing in QEMU “just isn't fun”

« But why?

gemu -hda linux.img -snapshot -net tap -net nic -usbdevice tablet

~ x ~ 2 > -
|SysBusDevi:e | |SysBusDevice | |SysBusDevice| | SysBusDevi:el |.:, device | |.-., evice |
[HPETState| [Fwcrgstate| [10aPICState| [1440Fxstate| [Picstate2] [KvMClockstate|

PCIBus PICState
—— SDLState
———
> » > » 13 13
[[| [. . > .
PClDevice [PciDevice] [PciDevice] [pciDevice| [PcIDevice] [PciDevice| [PcIDevice| |
L | I ? | ; ? | E ?] t | £] ; 1 : |DisplaySurfa:e] IDispIayAIIocatorl |Displaycha lgeListenerl |Display$urface| IDispIaySur‘facel
U t i]] ©] |
L}
[PciiaaoFxstate] [Plx3state] [PClIDEState| [UHCIState] [PlXaPMstate| [cirrusvGAstate| | ___ P I S _"
t | t . 1 E]k 1 | | ' P Y S E o EPE PSPy E S S SR
' * : E
Y “-- _ ——
m : |, : TextConsole | !TextC.
. . S PO | ’ ‘ —T1
[[[]] I I
[1sADevice| [1sADevice | [1saDevice| ' [isADevice| [isADevice| [iSADevice| [ISADevice| [1sADevice |
: i | ' ' I I | i | I i E |
i IP ZP CharDriverState | CharDriverState | | CharDriverState I
[FoctriisABus| [Portoastate| [VMMousestate] | [KBDstate| [PITstate] [RTCstate| [iSAserialstate| [isaParalleistate] L = i : = 1
E)| L] | 1 'k | E i I] | 1 | |

1
]

I

:

|

| IDEBus]| [Serialstate| [Parallelstate| |
: | : - !

:

]

|
' [1DEDevice | [iEDEVICE] ¢t ____!
i : X | L X . T K
______ |
|IDEDrve | [1DEDrive |
———

BlockDriverState

BlockDriverState

BlockDriverState

BlockDriverState

BDRVQcowState

BDRVQcowState
| BlockDriverState L1

BlockDriverState

BDRVRawState

BDRVRawsState

Block Layer

Drivelnfo Drivelnfo Drivelnfo
Lr_‘ LL‘ >
BlockDri Stat i
ockDriverstate BlockDriverState BlockDriverState
»

BlockDriverState

BDRVQcowState [ls

I—'—l BDRVQcowState
BlockDriverState LT
? BlockDriverState
1) -hda, -hdb, -hdc, ... T . L
2) -drive
BDRVRawState

3) -blockdev
4) drive_add
5) drive_del
6) blockdev_add 1) bdrv_register
7) blockdev_del 2) bdrv_open

8) query-block 3) whitelisting

Char Layer

TextConsole TextConsole
CharDriverState CharDriverState

TextConsole

CharDriverState

1) -chardev OPTS
2) -serial URI

3) -monitor URI
4) -parallel URI
5) query-chardev

1) gemu_chr_open
2) no dynamic registration

Display Layer

SDLState

|

DisplaySurface

DisplayAllocator

DisplayChangelListener

DisplaySurface

DisplaySurface

Everything is open coded :-(

1) query-networks
2) -net

3) -netdev

4) netdev_add

5) netdev_del

Network Layer

1) net_client_init

VLANState

S

NICState

v

TAPState

v

VLANCIlientState

VLANClientState

Monitor Layer

Monitor

Open coded?

Device Layer

BusState
B E I ™3 > x
| [|
I SysBusDevice I I SysBusDevice I | SysBusDevice | SysBusDevice | |SysBusDevice I SysBusDevice I
L i t 1 i L i
[HPETState| [Fwcrgstate| [1oaPICstate| [1aa0Fxstate] [Picstate2] [KvMClockstate |
t] t i t] t 1 t] G]
\
[PCiBus] [Picstate] [Picstate]
|b > I E I r E l
[PciDevice | [PciDevice| PClIDevice PClIDevice [PciDevice | PClIDevice PClDevice
: 1 L : ? L 1
[pcnagorxstate| [Pux3state| PCIIDEState [uHCIState| [PlX4PMstate| |[CirrusvGAstate|
L | E] L]k] L |
! A E1000State
\/ 1
[isABus] il [sMBusEEPROMDevice |
> > E E L E 'S 'S
[| | 1 | | | | |
[1sADevice | ISADevice ISADevice | [1sADevice| [ISADevice| [ISADevice| [iSADevice| [1sADevice |
I | 1 I | L i
]
1
I
FDCtrlISABus Port92State VMMouseState| KBDState PITState RTCState |ISASeriaIState| ISAParallelState
: I |
I_._I \ I_._I
FDCtrl IDEBus SerialState ParallelState
e —
———
IDEDevice [IDEDevice |
? I]
[1DEDrive | IDEDrive
L 1
L 1

The Fat

 Each subsystem has added its own
Infrastructure

« Everyone needs:

- Type serialization

- Inheritance

- Polymorphism

- Object properties

- Object enumeration

- Factory interfaces

- Mechanism to build an object graph

QAPI: Type Serialization

« Decompose serialization into two parts:

1) Marshalers - for a given C type, call a
method in the object for each primitive
member in type.

2) Transport - given a marshaler that can visit
each primitive member in a C type, provide
the translation of primitive types to
arbitrary representations

« Visitor - see gapi/qapi-visit-core.h
« QmpOutputVisitor - see gapi/gmp-output-
visitor.n and qapi/gmp-input-visitor.h

QEMU Object Model

« Standard Object Model supporting:
- Inheritance; single inheritance model +
interfaces

- Polymorphism; class based polymorphism
(no monkey patching)

- Object properties; common base class that
Implements properties in terms of Visitors

- Object enumeration; standard enumeration
interface

- Factory interface; standard factory interface
with delayed construction

« Construction properties are just normal
properties

Plugs and Sockets

« Two special property types

- Plug; a reference to a sub-object composed
within the object.

- Socket; a strongly typed pointer to an object

 Together, Plugs and Sockets allow for a
directed acyclic graph

- Can be used to model relationships between
layers and within layers (i.e. busses).

From Here

QAPI is already merged
- QMP is being converted to use it
QOM patches are on the ML
« Begin conversion with smaller layers (chardev)
- Initial patches posted

« Build a plan to convert the other layers
including the Device Layer

- Can we incrementally morph gdev into a
QOM type system?

QEMU 2.0

e Given a common infrastructure, we would have
the following:

- All backends and devices were created and
manipulated by a set of about 6 commands

- All object creation and manipulation could be
done through QMP

- Command line arguments are just QMP
iInvocations (mostly just calls to above 6
commands)

- Device model and backends are fully
introspectable

- Tree is fully modular (and type can be
removed with no code change)

QEMU 2.0

Current QMP and Command Line interface is
purely legacy

We could either (1) deprecate it and remove it
in 2.0 or (2) move it entirely to a separate tool
potentially written in a HIL

Significant simplification of QEMU

There will always be command line options or
monitor commands that don't go through QOM,
but it should be the exception.

Questions

e Questions, comments, flames?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

