
qcow2

Red Hat

Kevin Wolf

15 August 2011



Section 1

qcow2 format basics



qcow2 format basics

Overview of qcow2 features

Sparse images

Snapshots

Internal or external
Internal snapshots can contain VM state

Encryption

Compression

Can be used on block devices



qcow2 format basics

Reference counts

Image file is divided into clusters (64k default)

Two-level refcount table tracks used clusters

Clusters can be shared by multiple internal snapshots

0 0 0 0 0 0 00

2 2 2 0 0 0 0 0

2 2 2 2 2 2 2 2

2 2 2 2 2 21 2

Bytes 0 - 65535 are used once
Bytes 65536 - 131072 belong to two snapshots

1536k - 1600k is free



qcow2 format basics

Mapping

Two-level lookup table

L1/L2 table map virtual disk offsets to image file offsets

0 0 0 0 0 0 00

2 2 2 0 0 0 0 0

2 2 2 2 2 2 2 2

2 2 2 2 21 2 2
0x10000 0

0x30000 0x20000

0x50000 . . .

Guest reads from disk offset 128k
128k / 64k = 2 � third cluster



qcow2 format basics

Allocating a cluster

Requires updates to L2 table and refcounts

Crashes in the middle must not corrupt the image:
Order of updates is important

0 0 0 0 0 0 00

2 2 2 1 0 0 0 0

2 2 2 2 2 2 2 2

2 2 2 2 21 2 1
0x10000 0

0x130000 0x20000

0x50000 . . .

Guest writes to disk offset 128k
refcount >1 � COW required



Section 2

One year ago



One year ago

Development of performance

Many performance improvements until 0.12:

Allocate multiple clusters at once

Increase cluster size from 4k to 64k

Avoid unnecessary reads

Pretty much every obvious optimisation

400

800

1200

1600

0.10.6 0.11.1 0.12.4

Write throughput in kB/s during cluster allocation; 8k blocks; cache=none



One year ago

Development of performance

However...

cache=writethrough as default

Makes the default perform badly

Need to ensure ordering for metadata updates

Obvious fix: Add fsync after each update
Makes everything else perform badly

400

800

1200

1600

0.10.6 0.11.1 0.12.4 0.12.5 0.13.0

Write throughput in kB/s during cluster allocation; 8k blocks; cache=none



One year ago

Synchronous metadata updates

No parallelism

VCPU can be blocked

Can be measured with jitterd
http://git.codemonkey.ws/cgit/jitterd.git/
Worst effects with cache=writethrough

[root@localhost jitterd]# ./jitterd -f -m 2 -p 100 -r 10

[2011:08:12 13:29:50] jitterd -m 2 -p 100 -r 10

[2011:08:12 13:29:50] only reporting chatter greater than 200 millisecond(s).

[2011:08:12 13:30:20] chatter over 10 second(s) is 3855 ms with a peak of 390 ms

[2011:08:12 13:30:30] chatter over 10 second(s) is 1438 ms with a peak of 617 ms

[2011:08:12 13:30:40] chatter over 10 second(s) is 560 ms with a peak of 29 ms

...



Section 3

Let’s invent new formats



Let’s invent new formats

QED

Original idea: qcow2 without a refcount table

No fsyncs needed for ordering any more
...except that we rely on the file size now
File size and mapping updates must be ordered

Implemented idea: qcow2 without a refcount table, but with a
dirty flag

Set dirty flag while image is opened
After crash a check is required to make the image consistent

Fully asynchronous implementation

Only some of qcow2’s features



Let’s invent new formats

FVD

Separate allocation size from COW size

Large clusters (number of allocations, fragmentation)
Still keep reasonably small COW size

Journal for metadata



Let’s invent new formats

Why new formats are bad

New formats concentrate on few main features

“Uninteresting” features are left out
Some people switch, others can’t
Fragmentation of user base instead of standard format
Need features from both formats A and B? Bad luck!

Completely new codebase

Need to maintain (develop, test, ...) more code
Less confidence in correctness

Image conversion required to take advantage of new features

External tools need to be taught about the format

Better improve the existing formats!



Section 4

Today (qemu 0.15.0)



Today (qemu 0.15.0)

Qcow2Cache

Introduce a writeback metadata cache

Improves cluster allocation performance with writeback cache
modes (none/writeback/unsafe)

Some benchmarks improved by factor 10 or more

cache=writethrough behaves as before

400

800

1200

1600

0.10.6 0.11.1 0.12.4 0.12.5 0.13.0 0.14.0 0.15.0 QED

Write throughput in kB/s during cluster allocation; 8k blocks; cache=none



Today (qemu 0.15.0)

Other recent improvements

Zero-copy read/write

Yes, 0.13 qcow2 used a bounce buffer for everything

Support for bdrv discard

Not (yet?) passed through to file system
Discarded space is reused for cluster allocations



Section 5

qemu 1.x



qemu 1.x

Coroutines

Think of cooperatively scheduled threads

Allow to make synchronous code asynchronous with minimal
effort

Code can only be interrupted in known places
You can still call functions that are not thread-safe

block/qcow2-cluster.c | 26 +++---

block/qcow2.c | 240 ++++++++++++++++++-------------------------------

block/qcow2.h | 5 +-

3 files changed, 102 insertions(+), 169 deletions(-)

VCPU is no longer blocked during metadata access

Throughput pretty much the same as before

Future: More parallelism by finer grained locking



qemu 1.x

Random improvements with current format

Qcow2Cache optimisations:

Writethrough mode is too strict:
We don’t need to flush caches after each metadata write
Write out only dirty parts of cached parts

Optimise cluster allocation with no backing file/snapshot (no
reason to do COW there)

Image resizing

Shrinking is currently missing, easy to implement
What to do with internal snapshots?



qemu 1.x

qcow2 version 3

RFC patches for specification on mailing list

Add an optional dirty bit (“QED mode”)

Add zero clusters

Keep sparseness with image streaming
Discard with backing file

Configurable refcount width

Subclusters

Separation of allocation and COW size
32 subclusters per cluster allow 64k/2M configuration
Less metadata, less fragmentation
Allows preallocation even with backing files



qemu 1.x

The end.
Thanks for listening.


	qcow2 format basics
	One year ago
	Let's invent new formats
	Today (qemu 0.15.0)
	qemu 1.x

