
Yabusame: Postcopy Live Migration
for Qemu/KVM

Takahiro Hirofuchi, AIST

Isaku Yamahata, VALinux Systems Japan K.K.

KVM Forum 2011

This project is partially funded by Ministry of Economy, Trade and Industry.

Outline

• What is Postcoy Live Migration?

– Comparison with Precopy

– Experience from an early, ad-hoc
prototype

• Postcopy for Qemu/KVM

– Production-level design

– Qemu/KVM upstream merge

Takahiro

Isaku

Precopy v.s. Postcopy

• Precopy live migration

– Copy VM memory before switching the
execution host

– Widely used in VMMs

• Postcopy live migration

– Copy VM memory after switching the execution
host

– Yabusame

3

Demo http://grivon.apgrid.org/quick-kvm-migration

5

1. Copy all memory pages to
destination

2. Copy memory pages updated
during the previous copy again

3. Repeat the 2nd step until the rest
of memory pages are enough
small

4. Stop VM

5. Copy CPU registers, device states,
and the rest of memory pages.

6. Resume VM at destination

VM

Machine A Machine B

Precopy Live Migration (1)
Copy VM memory before relocation

6

Memory update speed (pages/s)

M
ig

ra
ti
o
n
 t

im
e
 (

s)

Migration time depends on
memory update speeds.

Precopy Live Migration (2)
Copy VM memory before relocation

Postcopy Live Migration (1)
Copy VM memory after relocation

7

VM

Machine A Machine B

Stop
1.Stop VM

2.Copy CPU and device
states to destination

3.Resume VM at
destination

4.Copy memory pages

RAM

Postcopy Live Migration (2)
Copy VM memory after relocation

8

VM

Machine A Machine B

1.Stop VM

2.Copy CPU and device
states to destination

3.Resume VM at
destination

4.Copy memory pages

Copy CPU and device states
512KB or so (w/o VGA)

=> Less than 1 sec for relocation

RAM

Postcopy Live Migration (3)
Copy VM memory after relocation

9

VM VM

Machine A Machine B

1.Stop VM

2.Copy CPU and device
states to destination

3.Resume VM at
destination

4.Copy memory pages

Resume

RAM

Postcopy Live Migration (4)
Copy VM memory after relocation

10

VM VM

Machine A Machine B

1.Stop VM

2.Copy CPU and device
states to destination

3.Resume VM at
destination

4.Copy memory pages

Copy memory pages
• On-demand
• Background (Precache)

RAM

Precopy v.s. Postcopy

Precopy Postcopy

Before the execution host is
switched, memory pages are
transferred to the destination.

After the execution host is
switched, memory pages are
transferred to the destination.

The time until
the execution

host is
switched

The time until
all states are

removed

RAM size

Network speed
+ alpha

RAM size

Network speed
+ alpha

RAM size

Network speed

200-300ms

• alpha: depends on memory update speed (non deterministic!)
• Note the above values are the worst case.

• Qemu skips zero-filled page.

Question (1)

• Is there performance loss after relocation?

– Yes, (hopefully?) slightly.

– The working set of memory pages is limited.

– These pages are precached as soon as possible.

13

Migrate an heavily-loaded Web Server VM

The execution host is
instantaneously switched.

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

Using the SPECweb 2005 Banking benchmark.

Performance loss
is limited.

14

Transferred Page Offsets
(Precache Disabled)

Most page offsets are limited in this area.
=> Precache this area for better performance.

Question (2)

• Useful for dynamic server consolidation?

– Hopefully, yes.

– Enables quick, deterministic load balancing.

Dynamic Consolidation

16

VM

Assure VM Performance

Distribute running VMs into other hosts

Power up new physical hosts

The CPU usage of
physical machines

Remove overload

When datacenter load
becomes high,

Postcopy v.s. Precopy
for dynamic consolidation

17

The consolidation
system using precopy
cannot quickly migrate
VMs, resulting serious
performance loss on
sudden load changes.

Postcopy contributes
alleviating performance
loss.

Performance Degradation（％）

Detection overhead

Memory Update Intensity of Workloads
（Gbyte/s@CPU100%）

Using

Using

Summary of the first half

• Yabusame

– Postcopy Live Migration for Qemu/KVM

– The execution host is switched in 200-300ms.

– The total migration time is shorter than precopy.
It is deterministic!

– An early-stage, ad-hoc, ad-hoc, concept-proof
prototype is here.

• http://grivon.apgrid.org/quick-kvm-migration

• Do not use it!

• Next, discuss a upstream merge-able design…

Why re-design/implementation
● Next step of YABUSAME project

● We'd like to merge post copy livemigartion into the upstream

● The existing patch was implemented for
● academic research
● proof-of-concept

● So, its design/implementation is
● Ad-hoc, quick-hack
● Not suitable for the upstream merge

● => re-design/implement it for the upstream merge

Prerequisite
● New implementation should satisfy

● Allow qemu/kvm features
● target/host agnostic

● accelerator(tcg, kvm)

● Devices

– emulated devices, virtio, vhost

– assigned-device won't be supported

● Allow kvm host features
● Swap, KSM, THP/hugetlb, async page fault, coredump...

● Zero overhead after migration completes
● CPU, memory

● Minimal administrative operation
● Don't require special preparation on migration source

qemu-kvm

character
device

qemu-kvm

guest RAM
vma::fault
2. page fault is hooked by
Character device.

destination

daemon

3. Request for page
1. access to
guest RAM

4. page contents is sent back
Connection for live-migration
is reused

5. page contents
is passed down to
the driver

Host kernel

6. resolve page fault

0. mmap()

source

Implementation proposal

guest RAM

Host kernel

Design points
● Who on the destination handles page requests

● An independent daemon or a thread in qemu-kvm

● connection between source/destination
● Re-use the connection of live-migration or
● Create new connection

● Page transfer protocol. Based on
● Qemu live migration or
● other protocol: nbd, iSCSI, AOE

● How to hook guest RAM access

Hooking guest RAM access

● Insert hooks all accesses to guest RAM
● Character device driver
● Backing store(block device or file)
● Swap device

Insert hooks

● Insert hooks all accesses to guest RAM
● Carefull code inspection is required
● Pros

● Portable. May work with qemu tcg without any
kernel drivers

● Cons
● Impractical

Backing device/file approach
● Use block device or file
as backing store for guest
RAM

● Pros
● New device driver isn't
needed

● Cons
● Future improvement would be
difficult

● Some KVM host features
wouldn't work.(KSM, THP)

Regular file or
Block device

qemu-kvm

guest RAM

destination

Host kernel

mmap()

IO

FUSE or nbd or
User block device

Character device approach
● Character device to handle page
fault on guest RAM area

● Pros
● Straight forward
● Future improvement would be easy

● Cons
● New driver is necessary
● Some KVM host features wouldn't
work.(KSM, THP)
– VMA isn't anonymous

– Can be fixed character
device

qemu-kvm

guest RAM

vma::fault

destination

Host kernel

mmap()

page
request

Swap device approach
● On destination, set up such
that all guest RAM are
swapped out

● Pros
● Every thing would be normal
after migration completes

● New device driver isn't needed

● Cons
● Future improvement would be
difficult

● Administration
– setting up swap device

Block device

qemu-kvm

guest RAM

destination

Host kernel

mmap()

IO

nbd or
user block device

swap

Comparison
Pros Cons

Modify VMM portability impractical

Backing store No new device driver Difficult future improvement
Some kvm host features
wouldn't work

Character Device Straight forward
Future improvement

Need to fix kvm host features

Swap device Everything is normal after
migration

Administration
Difficult future improvement

Future work after the merge
● Evaluation/benchmark

● Optimization
● Another connection for background page transfer

– Bandwidth control

● Reduce unnecessary page fault
● Mix precopy/postcopy
● Avoid memory copy
● Hint not to send page contents
● Not to fetch pages when writing/clearing whole page

– cleancache/frontswap might be good candidate

● Libvirt support is necessary?

● Cooperate with Kemari

Questions/discussions
● We want the community feedback

● Project page
● http://sites.google.com/site/grivonhome/quick-kvm-migration

● Enabling Instantaneous Relocation of Virtual Machines with a Lightweight
VMM Extension: proof-of-concept, ad-hoc prototype. not a new design
● http://grivon.googlecode.com/svn/pub/docs/ccgrid2010-hirofuchi-paper.pdf

● http://grivon.googlecode.com/svn/pub/docs/ccgrid2010-hirofuchi-talk.pdf

● Reactive consolidation of virtual machines enabled by postcopy live
migration: advantage for VM consolidation
● http://portal.acm.org/citation.cfm?id=1996125

● http://www.emn.fr/x-info/ascola/lib/exe/fetch.php?media=internet:vtdc-postcopy.pdf

● Qemu Wiki
● http://wiki.qemu.org/Features/PostCopyLiveMigration

http://grivon.googlecode.com/svn/pub/docs/ccgrid2010-hirofuchi-paper.pdf
http://grivon.googlecode.com/svn/pub/docs/ccgrid2010-hirofuchi-talk.pdf
http://portal.acm.org/citation.cfm?id=1996125
http://www.emn.fr/x-info/ascola/lib/exe/fetch.php?media=internet:vtdc-postcopy.pdf
http://wiki.qemu.org/Features/PostCopyLiveMigration

	forum-2011-yabusame-part2.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

