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Agenda

= Motivation & scenarios
= RT benchmark updates

" Improving QEMU RT performance
= Analysis of critical paths

= Steps to overcome latency spots
= Summary
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Recall Last Year: SIEMENS
Why Using KVM in Embedded?

“We just need a tiny hypervisor to fully exploit this multicore CPU”
= “A few thousand” lines of hypervisor code
= Minimal hardware emulation
= “A bit” paravirtualization
" Devices are passed through

RTOS Linux @ Windows $0S
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Recall Last Year:

SIEMENS

Why Using KVM in Embedded?

“We just need a tiny hypervisor to fully exploit this multicore CPU”
= “A few thousand” lines of hypervisor code

* Minimal hardware emulation
= “A bit” paravirtualization
" Devices are passed through

“But it would be nice to...”
= share some devices
" run upstream Linux
and latest Windows
= gover-commit resources
" manage power
" backup / migrate guests
= use advanced HA features

RTOS Linux @ Windows $0S
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...and in Real-Time Scenarios? SIEMENS
Pros & Cons

From partitioning hypervisors...
+ High degree of temporal isolation

+ Static allocations simplify RT guarantees
= Poor flexibility
= Non-commodity setup
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...and in Real-Time Scenarios? SIEMENS
Pros & Cons

From partitioning hypervisors...
+ High degree of temporal isolation

+ Static allocations simplify RT guarantees
= Poor flexibility
= Non-commodity setup

... to full virtualization
= Usually not designed for RT

= Higher complexity makes establishing RT harder

+ Benefit from large user base
» Guest support
= Test coverage

+ Benefit from advanced virtualization features
+RT and SMP scalability share many requirements
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SIEMENS
Typical Real-Time Guest Setups

Guest types
= Classic RTOS
* AMP (RTOS + x)
= GPOS with RT requirements

Guest interacts with real world — in real-time
* Real-time network (normal/RT Ethernet, fieldbuses, etc.)
" Digital & analogue 1I/O interfaces
= Data acquisition adapters

Interface access
* Pass-through, i.e. 1:1 mapping of periphery to guest
= Emulation
* Decoupling of guest driver and host hardware
* Physical interface sharing — or avoiding (test environments)
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SIEMENS
Benchmark Updates

What is possible today?
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Timed Task Benchmarks: SIEMENS
Setup (1)

Host system
= Intel Core i7, 4 cores, 2 threads each

" OpenSUSE 11.4

* PREEMPT-RT kernel 2.6.33.9-rt31

= cyclictest measures timed task wakeup latency
cyclictest -n -p 99 -h 500 -g
* Host-side load

= Cache benchmark loop
calibrator 3392 8M outputfile

= |/O benchmark loop
echo 1 > /proc/sys/vm/drop caches ; bonnie -y -s 2000

* _oad loops and cyclictest (for host benchmark) or guest VCPU
thread (for guest benchmark) bound to host CPU 0
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Timed Task Benchmarks: SIEMENS
Setup (2)

Guest system
" OpenSUSE 11.4

* PREEMPT-RT kernel 2.6.33.9-rt31
=" gemu-kvm patched to allow prioritization

= VM configured to avoid latency-sensitive guest exits:
-m 1G -drive file=guest.img,if=virtio
-rt maxprio=80,paioprio=1 -nographic -vga none
-netdev user,hostfwd=::2222-:22,id=net
-net nic,netdev=net

= cyclictest measures timed guest task wakeup latency
cyclictest -n -p 99 -h 500 -g

" Host-side load kept unchanged
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Timed Task Benchmarks: SIEMENS
Results after ~3h

Host latency on 2.6.33.9-rt31
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External Event Benchmark: SIEMENS
AMP RT Guest with Passed-Through NIC

Host configuration
= Base setup as before

" Intel i82541P1 NIC as I/O device (no MSI)
= VM with 2 VCPUs

Guest properties
= GPOS and RTOS on different VCPUs

* RTOS only interacts with
= APIC & IO-APIC
= Assigned devices (here: PCI NIC)
=> no exits to QEMU user space

* GPOS requires full-blown virtualization, specifically VGA
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External Event Benchmark:
Measuring Network Latency

External measurement system
" | inux/Xenomai with RTnet
- rtping @100 HZ 100000 |

Load scenario
= hackbench 150 process 1000

Frequency

= Disk 1/O load on host

" ping -f from host to
GPOS guest (via tap+virtio)
" ftrace enabled for events

1

Worst case round-trip latency:
(after 16 h)
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External Event Benchmark:
Measuring Network Latency

External measurement system

= Linux/Xenomai with RTnet osco |

" riping @100 HZ

Load scenario
= hackbench 150 process 1000 ¢ ol
= Disk I/O load on host

" ping -f from host to
GPOS guest (via tap+virtio)
" ftrace enabled for events

1

Worst case round-trip latency:
(after 16 h)

Same scenario with emulated NIC:
(prioritized host NIC IRQ & RX Soft IRQ)
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rtping Latency of RTOS on 2.6.31.9-rt31
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SIEMENS
QEMU Still Ruining Latencies

Everything under gemu_global_mutex
* Remaining synchronous disk I/O
Note: observed io _submit() syscall latencies >1 s,
paio architecture is immune

= Network I/O
= Terminal I/O
= X interaction (GUI updates)

" Dirty RAM log synchronization
(>10 ms on synchronize_srcu_expedited)

= _..and probably more

gemu_global_mutex is a no-go for RT code paths!
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Overcoming the Global Lock — SIEMENS
Road Works

CPUState
= Read/write access
" cpu_single _env

PIO/MMIO request-to-device dispatching

Coalesced MMIO flushing

Back-end access
= TX on network layer
= \Write to character device
" Timer setup, etc.
Back-end events (iothread jobs)
* Network RX, read from chardev, timer signals, ...

IRQ delivery
* Raising/lowering from device model to IRQ chip
" |Injection into VCPU (if user space IRQ chips)
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Step 1: Localize CPUState

VCPU owns its CPUState
* No remote write unless VCPU is stopped

= Establish formal rule
(pre-exists for KVM core)

= Just few code changes required
cpu_current_env becomes per-CPU variable

» pthread_set/get_specific on UNIX

= Win32 requires wrapping

= Works with single TCG CPU thread as well
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SIEMENS
Step 2: 1/O Dispatching

Which device handles accessed memory region?
Critical path

= Walk memory map

= Obtain handler & device reference

" |Invoke handler

= Done
Preferred approach: lock-less

* Modifications are rare

= Acquiring read-side lock is costly, may even deadlock

Solution: stop machine while modifying memory map
(pattern also used in kvm-tool)
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SIEMENS
Step 3: Coalesced MMIO Handling

Coalesced MMIO ring as contention point
* One ring per-VM
* Readers must synchronize
= Currently protected by gemu_global mutex

Short-term solution
= Skip flush if target device does not use coalesced MMIO
» Affects VGA and E1000 so far

Long-term solution
* One ring per-device — or MMIO region
* Socket-based ioeventfd may be the answer
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SIEMENS
Step 4: IRQ Forwarding

Typical IRQ path
* Device changes level / generates edge
* |RQ routers (PCI host, bridges, IRQ remapper, etc.)
forward to interrupt controller
" Interrupt controller forwards to CPU
=> Routing involves multiple device models,
l.e. potentially multiple critical sections

Cannot take the long road if source & sink are in-kernel
* Hacks exist to explore and monitor routes — on x86
=> (Generic mechanism required

Fast path from device to target CPU
" No interaction with routing devices
= State changes (reroutes, blockings) reported to subscribers
" Routing device states can be updated on demand
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The Harder Nuts — SIEMENS

Step 5: Concurrent Device Models

Mandatory
* Separate contexts to handle host-originated events
" Enables event prioritization and parallelizing
" jothread(s) can remain “best effort” zone(s)

Variant A
= Per-device lock for atomic sections
= Separate iothreads

Variant B
= Device server thread executes atomic sections
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SIEMENS
Variant A: A Lock for Every Device

Per-device lock
* Protects atomic sections (PIO/MMIO requests, event processing)
= Can be taken over VCPU or I/O thread contexts

Separate I/O threads
" Process host-triggered work
* Device-related file descriptor callbacks
= Bottom-halves
* Granularity: device or group of devices

Downside
= MMIO addresses device, device issues DMA to another device
=> |ock nestings, lock recursions, deadlocks
= Which lock to acquire in which order?
= Can we drop the device lock while calling core services?
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SIEMENS

Variant B: Device Server Thread

Server thread runs device jobs
* Host-triggered work
= Complex guest-triggered work

Guest /0O requests forwarded to server
» Write requests can be synchronous and asynchronous
* Reads must be synchronous

Trivial I/O requests do not require server context
= get/set register without side effects

Thread ensures atomicity of device model
=> no locks required (famous last words...)

Downsides
= May require careful ordering of state changes
* May require use of atomics & barriers
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SIEMENS

Work in Progress

QEMU activities
" Implement sketched road map
= Currently focusing on variant B
" Primary target
= E1000 device model
= KVM with in-kernel IRQ chips

Kernel activities
* Hunt & analyze potential latency spots (hundred us range)
= Address IRQ thread management issue
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Implementation Footnote: SIEMENS
Fun with glibc and POSIX

glibc's condition variables
+ priority inheritance mutexes
= deadlock

Background
" Internal condvar locks aren't Pl-aware
= Using PI locks unconditionally considered too heavy
» Lacking POSIX interface to declare Pl for condvars
* Patches exist for pthread condattr_setprotocol np
= |gnored by glibc folks :-(

Workarounds
= Use priority ceiling
= Costly (one syscall per mutex lock/unlock)
= All participating threads must be SCHED FIFO/RR
* Don't use condvars
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SIEMENS

Summary

Many benefits of using KVM as RT hypervisor
" Full virtualization feature set
* Matured support for broad range of guests

Restricted RT support so far
= \Works well without QEMU in the loop
» User space VM exits trigger huge latencies

Ongoing work to reduce restrictions
* Parallelize and prioritize QEMU device models
" Next goal: emulated RT networking
" Event loop latencies <1 ms in reach

Progress on real-time will improve SMP scalability as well!
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SIEMENS

Any Questions?

Thank you!
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