SIEMENS

Corporate Technology

Using KVM as a
Real-Time Hypervisor

Jan Kiszka, Siemens AG, CT TDE IT 1
Corporate Competence Center Embedded Linux

jan.kiszka@siemens.com

SIEMENS
Agenda

= Motivation & scenarios
= RT benchmark updates

" Improving QEMU RT performance
= Analysis of critical paths

= Steps to overcome latency spots
= Summary

Slide 2 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

Recall Last Year: SIEMENS
Why Using KVM in Embedded?

“We just need a tiny hypervisor to fully exploit this multicore CPU”
= “A few thousand” lines of hypervisor code
= Minimal hardware emulation
= “A bit” paravirtualization
" Devices are passed through

RTOS Linux @ Windows $0S

Slide 3 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

Recall Last Year:

SIEMENS

Why Using KVM in Embedded?

“We just need a tiny hypervisor to fully exploit this multicore CPU”
= “A few thousand” lines of hypervisor code

* Minimal hardware emulation
= “A bit” paravirtualization
" Devices are passed through

“But it would be nice to...”
= share some devices
" run upstream Linux
and latest Windows

RTOS Linux @ Windows $0S

Slide 4 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

Recall Last Year:

SIEMENS

Why Using KVM in Embedded?

“We just need a tiny hypervisor to fully exploit this multicore CPU”
= “A few thousand” lines of hypervisor code

* Minimal hardware emulation
= “A bit” paravirtualization
" Devices are passed through

“But it would be nice to...”
= share some devices
" run upstream Linux
and latest Windows
= gover-commit resources
" manage power

RTOS Linux @ Windows $0S

Slide 5 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

Recall Last Year:

SIEMENS

Why Using KVM in Embedded?

“We just need a tiny hypervisor to fully exploit this multicore CPU”
= “A few thousand” lines of hypervisor code

* Minimal hardware emulation
= “A bit” paravirtualization
" Devices are passed through

“But it would be nice to...”
= share some devices
" run upstream Linux
and latest Windows
= gover-commit resources
" manage power
" backup / migrate guests
= use advanced HA features

RTOS Linux @ Windows $0S

Slide 6 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

...and in Real-Time Scenarios? SIEMENS
Pros & Cons

From partitioning hypervisors...
+ High degree of temporal isolation

+ Static allocations simplify RT guarantees
= Poor flexibility
= Non-commodity setup

Slide 7 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

...and in Real-Time Scenarios? SIEMENS
Pros & Cons

From partitioning hypervisors...
+ High degree of temporal isolation

+ Static allocations simplify RT guarantees
= Poor flexibility
= Non-commodity setup

... to full virtualization
= Usually not designed for RT

= Higher complexity makes establishing RT harder

+ Benefit from large user base
» Guest support
= Test coverage

+ Benefit from advanced virtualization features
+RT and SMP scalability share many requirements

Slide 8 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

SIEMENS
Typical Real-Time Guest Setups

Guest types
= Classic RTOS
* AMP (RTOS + x)
= GPOS with RT requirements

Guest interacts with real world — in real-time
* Real-time network (normal/RT Ethernet, fieldbuses, etc.)
" Digital & analogue 1I/O interfaces
= Data acquisition adapters

Interface access
* Pass-through, i.e. 1:1 mapping of periphery to guest
= Emulation
* Decoupling of guest driver and host hardware
* Physical interface sharing — or avoiding (test environments)

Slide 9 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

SIEMENS
Benchmark Updates

What is possible today?

Slide 10 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

Timed Task Benchmarks: SIEMENS
Setup (1)

Host system
= Intel Core i7, 4 cores, 2 threads each

" OpenSUSE 11.4

* PREEMPT-RT kernel 2.6.33.9-rt31

= cyclictest measures timed task wakeup latency
cyclictest -n -p 99 -h 500 -g
* Host-side load

= Cache benchmark loop
calibrator 3392 8M outputfile

= |/O benchmark loop
echo 1 > /proc/sys/vm/drop caches ; bonnie -y -s 2000

* _oad loops and cyclictest (for host benchmark) or guest VCPU
thread (for guest benchmark) bound to host CPU 0

Slide 11 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

Timed Task Benchmarks: SIEMENS
Setup (2)

Guest system
" OpenSUSE 11.4

* PREEMPT-RT kernel 2.6.33.9-rt31
=" gemu-kvm patched to allow prioritization

= VM configured to avoid latency-sensitive guest exits:
-m 1G -drive file=guest.img,if=virtio
-rt maxprio=80,paioprio=1 -nographic -vga none
-netdev user,hostfwd=::2222-:22,id=net
-net nic,netdev=net

= cyclictest measures timed guest task wakeup latency
cyclictest -n -p 99 -h 500 -g

" Host-side load kept unchanged

Slide 12 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

Timed Task Benchmarks: SIEMENS
Results after ~3h

Host latency on 2.6.33.9-rt31

e s cyclictest on guest
Maximum: 112 ys

1e+06

100000
Guest Latency of 2.6.33.9-rt31 on 2.6.31.9-rt31
z 10000 1e+07
5
:t, Maximum: 112 us
= 1000 1e+06 | Average: 30 us
100 100000
10 3 10000 ¢
g
g
1 . i 1000
1 10 100 1000
Latency [us]
100
L]
cyclictest on host N
-
Maximum: 29 us

1
1 1000

Latency [us]

Note: Test length too short for reliable maxima

Slide 13 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

External Event Benchmark: SIEMENS
AMP RT Guest with Passed-Through NIC

Host configuration
= Base setup as before

" Intel i82541P1 NIC as I/O device (no MSI)
= VM with 2 VCPUs

Guest properties
= GPOS and RTOS on different VCPUs

* RTOS only interacts with
= APIC & IO-APIC
= Assigned devices (here: PCI NIC)
=> no exits to QEMU user space

* GPOS requires full-blown virtualization, specifically VGA

Slide 14 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

External Event Benchmark:
Measuring Network Latency

External measurement system
" | inux/Xenomai with RTnet
- rtping @100 HZ 100000 |

Load scenario
= hackbench 150 process 1000

Frequency

= Disk 1/O load on host

" ping -f from host to
GPOS guest (via tap+virtio)
" ftrace enabled for events

1

Worst case round-trip latency:
(after 16 h)

Slide 15 2010-08-15 Jan Kiszka, CT T DE IT 1

SIEMENS

rtping Latency of RTOS on 2.6.31.9-rt31

10000 [

1000

10 |

Maximum: 330 us
Average: 153 us

1
10 100 1000
Latency [us]

330 us

© Siemens AG, Corporate Technology

External Event Benchmark:
Measuring Network Latency

External measurement system

= Linux/Xenomai with RTnet osco |

" riping @100 HZ

Load scenario
= hackbench 150 process 1000 ¢ ol
= Disk I/O load on host

" ping -f from host to
GPOS guest (via tap+virtio)
" ftrace enabled for events

1

Worst case round-trip latency:
(after 16 h)

Same scenario with emulated NIC:
(prioritized host NIC IRQ & RX Soft IRQ)

Slide 16 2010-08-15 Jan Kiszka, CT T DE IT 1

SIEMENS

rtping Latency of RTOS on 2.6.31.9-rt31

100000

10 |

Maximum: 330 us
Average: 153 us

1
10 100 1000
Latency [us]

330 us

100 ms — and more

© Siemens AG, Corporate Technology

SIEMENS
QEMU Still Ruining Latencies

Everything under gemu_global_mutex
* Remaining synchronous disk I/O
Note: observed io _submit() syscall latencies >1 s,
paio architecture is immune

= Network I/O
= Terminal I/O
= X interaction (GUI updates)

" Dirty RAM log synchronization
(>10 ms on synchronize_srcu_expedited)

= _..and probably more

gemu_global_mutex is a no-go for RT code paths!

Slide 17 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

Overcoming the Global Lock — SIEMENS
Road Works

CPUState
= Read/write access
" cpu_single _env

PIO/MMIO request-to-device dispatching

Coalesced MMIO flushing

Back-end access
= TX on network layer
= \Write to character device
" Timer setup, etc.
Back-end events (iothread jobs)
* Network RX, read from chardev, timer signals, ...

IRQ delivery
* Raising/lowering from device model to IRQ chip
" |Injection into VCPU (if user space IRQ chips)

Slide 18 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

Step 1: Localize CPUState

VCPU owns its CPUState
* No remote write unless VCPU is stopped

= Establish formal rule
(pre-exists for KVM core)

= Just few code changes required
cpu_current_env becomes per-CPU variable

» pthread_set/get_specific on UNIX

= Win32 requires wrapping

= Works with single TCG CPU thread as well

Slide 19 2010-08-15 Jan Kiszka, CT T DE IT 1

SIEMENS

© Siemens AG, Corporate Technology

SIEMENS
Step 2: 1/O Dispatching

Which device handles accessed memory region?
Critical path

= Walk memory map

= Obtain handler & device reference

" |Invoke handler

= Done
Preferred approach: lock-less

* Modifications are rare

= Acquiring read-side lock is costly, may even deadlock

Solution: stop machine while modifying memory map
(pattern also used in kvm-tool)

Slide 20 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

SIEMENS
Step 3: Coalesced MMIO Handling

Coalesced MMIO ring as contention point
* One ring per-VM
* Readers must synchronize
= Currently protected by gemu_global mutex

Short-term solution
= Skip flush if target device does not use coalesced MMIO
» Affects VGA and E1000 so far

Long-term solution
* One ring per-device — or MMIO region
* Socket-based ioeventfd may be the answer

Slide 21 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

SIEMENS
Step 4: IRQ Forwarding

Typical IRQ path
* Device changes level / generates edge
* |RQ routers (PCI host, bridges, IRQ remapper, etc.)
forward to interrupt controller
" Interrupt controller forwards to CPU
=> Routing involves multiple device models,
l.e. potentially multiple critical sections

Cannot take the long road if source & sink are in-kernel
* Hacks exist to explore and monitor routes — on x86
=> (Generic mechanism required

Fast path from device to target CPU
" No interaction with routing devices
= State changes (reroutes, blockings) reported to subscribers
" Routing device states can be updated on demand

Slide 22 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

The Harder Nuts — SIEMENS

Step 5: Concurrent Device Models

Mandatory
* Separate contexts to handle host-originated events
" Enables event prioritization and parallelizing
" jothread(s) can remain “best effort” zone(s)

Variant A
= Per-device lock for atomic sections
= Separate iothreads

Variant B
= Device server thread executes atomic sections

Slide 23 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

SIEMENS
Variant A: A Lock for Every Device

Per-device lock
* Protects atomic sections (PIO/MMIO requests, event processing)
= Can be taken over VCPU or I/O thread contexts

Separate I/O threads
" Process host-triggered work
* Device-related file descriptor callbacks
= Bottom-halves
* Granularity: device or group of devices

Downside
= MMIO addresses device, device issues DMA to another device
=> |ock nestings, lock recursions, deadlocks
= Which lock to acquire in which order?
= Can we drop the device lock while calling core services?

Slide 24 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

SIEMENS

Variant B: Device Server Thread

Server thread runs device jobs
* Host-triggered work
= Complex guest-triggered work

Guest /0O requests forwarded to server
» Write requests can be synchronous and asynchronous
* Reads must be synchronous

Trivial I/O requests do not require server context
= get/set register without side effects

Thread ensures atomicity of device model
=> no locks required (famous last words...)

Downsides
= May require careful ordering of state changes
* May require use of atomics & barriers

Slide 25 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

SIEMENS

Work in Progress

QEMU activities
" Implement sketched road map
= Currently focusing on variant B
" Primary target
= E1000 device model
= KVM with in-kernel IRQ chips

Kernel activities
* Hunt & analyze potential latency spots (hundred us range)
= Address IRQ thread management issue

Slide 26 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

Implementation Footnote: SIEMENS
Fun with glibc and POSIX

glibc's condition variables
+ priority inheritance mutexes
= deadlock

Background
" Internal condvar locks aren't Pl-aware
= Using PI locks unconditionally considered too heavy
» Lacking POSIX interface to declare Pl for condvars
* Patches exist for pthread condattr_setprotocol np
= |gnored by glibc folks :-(

Workarounds
= Use priority ceiling
= Costly (one syscall per mutex lock/unlock)
= All participating threads must be SCHED FIFO/RR
* Don't use condvars

Slide 27 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

SIEMENS

Summary

Many benefits of using KVM as RT hypervisor
" Full virtualization feature set
* Matured support for broad range of guests

Restricted RT support so far
= \Works well without QEMU in the loop
» User space VM exits trigger huge latencies

Ongoing work to reduce restrictions
* Parallelize and prioritize QEMU device models
" Next goal: emulated RT networking
" Event loop latencies <1 ms in reach

Progress on real-time will improve SMP scalability as well!

Slide 28 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

SIEMENS

Any Questions?

Thank you!

Slide 29 2010-08-15 Jan Kiszka, CT T DE IT 1 © Siemens AG, Corporate Technology

	Folie 1
	Agenda
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

