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Overview

• Discuss a range of topics about KVM performance
– How to improve out of the box experience
– But crammed into 30 minutes

• Use libvirt where possible
– Note that not all features in all releases
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Before we dive in...
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Agenda

• Low hanging fruit
• Memory
• Networking 
• Block I/O basics
• NUMA and affinity settings
• CPU Settings
• Wrap up 
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Recent Performance Improvements

• Performance enhancements in every component

Component Feature

CPU/Kernel NUMA – Ticketed spinlocks; Completely fair scheduler; 
Extensive use of Read Copy Update (RCU)
Scales up to 64 vcpus per guest

Memory Large memory optimizations: Transparent Huge Pages is 
ideal for hardware based virtualization

Networking Vhost-net – a kernel based virtio w/ better throughput and 
latency. SRIOV for ~native performance

Block AIO, MSI, scatter gather.
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Remember this ?
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Be Specific !

• virt-manager will:

– Make sure the guest 
will function

– Optimize as it can

• The more info you provide the 
more tailoring will happen

Specify the
OS details
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Specify OS + flavor

• Specifying Linux will get you:
– The virtio driver

– If the kernel is recent 
enough the vhost_net 
drivers



9

I Like This Much Better
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Memory Tuning – Huge Pages

• 2M pages vs 4K standard Linux page

– Virtual to physical page map is 512 times smaller

– TLB can map more physical page resulting fewer misses

• Traditional Huge Pages always pinned

• We now have Transparent Huge Pages

• Most databases support Huge Pages

• Benefits not only Host but guests

– Try them in a guest too !
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Transparent Huge Pages
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Network Tuning Tips

• Separate networks for different functions

– Use arp_filter to prevent ARP Flux

• echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter

• Use /etc/sysctl.conf for permanent  

• Packet size - MTU

– Need to make sure it is set across all components

• Don't need HW to bridge  intra-box communications

– VM traffic never hits the HW on same box

– Can really kick up MTU as needed
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KVM Network Architecture - VirtIO

• Virtual Machine sees paravirtualized 
network device – VirtIO
– VirtIO drivers included in Linux Kernel
– VirtIO drivers available for Windows

• Network stack implemented in userspace
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KVM Network Architecture 
Virtio

Context switch host 
kernel <-> userspace
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KVM Network Architecture – vhost_net

• Moves QEMU network stack from 
userspace to kernel

• Improved performance

• Lower Latency

• Reduced context switching

• One less copy
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Host CPU Consumption virtio vs vhost_net
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vhost_net Efficiency
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KVM Architecture – Device Assignment vs SR/IOV

Device Assignment
SR-IOV
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KVM Network Architecture – PCI Device Assignment 

• Physical NIC is passed directly to guest
– Device is not available to anything else on the host

• Guest sees real physical device

– Needs physical device driver

• Requires hardware support

Intel VT-D or AMD IOMMU

• Lose hardware independence

• 1:1 mapping of NIC to Guest

• BTW - This also works on some I/O controllers
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KVM Network Architecture – SR-IOV

• Single Root I/O Virtualization

New class of PCI devices that present multiple virtual devices that 
appear as regular PCI devices

• Guest sees real physical device

– Needs physical (virtual) device driver

• Requires hardware  support

• Actual device can still be shared

• Low overhead, high throughput

• No live migration – well its difficult

• Lose hardware independence
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Latency comparison
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KVM  w/ SR-IOV Intel Niantic 10Gb Postgres DB 
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I/O Tuning - Hardware

• Know your Storage
– SAS or SATA?
– Fibre Channel, Ethernet or SSD?
– Bandwidth limits

• Multiple HBAs
– Device-mapper-multipath
– Provides multipathing capabilities and LUN persistence

• How to test
– Low level I/O tools – dd, iozone, dt, etc
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I/O Tuning – Understanding I/O Elevators

● Deadline

– Two queues per device, one for read and one for writes

– IOs dispatched based on time spent in queue
• CFQ

– Per process queue

– Each process queue gets fixed time slice (based on process priority)
• Noop

– FIFO
– Simple I/O Merging
– Lowest CPU Cost

• Can set at Boot-time
– Grub command line – elevator=deadline/cfq/noop

• Or Dynamically – per device
– echo “deadline” > /sys/class/block/sda/queue/scheduler
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Virtualization Tuning – I/O elevators - OLTP
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Virtualization Tuning - Caching

• Cache=none
– I/O from the guest in not cached

• Cache=writethrough
– I/O from the guest is cached and written through on the host
– Potential scaling problems with this option with multiple guests 

(host cpu used to maintain cache)

• Cache=writeback - Not supported
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Effect of I/O Cache settings on Guest performance
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I/O Tuning - Filesystems 

B

• Configure read ahead
– Database ( parameters to configure read ahead)
– Block devices ( getra , setra )

• Asynchronous I/O
– Eliminate Synchronous I/O stall
– Critical for I/O intensive applications
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AIO – Native vs Threaded (default)
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Remember Network Device Assignment ?

• Device Assignment
– It works for Block too !
– Device Specific
– Similar Benefits
– And drawbacks...
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NUMA (Non Uniform Memory Access)

• Multi Socket – Multi core architecture

– NUMA is needed for scaling

• Keep memory latencies low

– Linux completely NUMA aware

– Additional performance gains by enforcing NUMA placement

– Still some “out of the box” work is needed

• How to enforce NUMA placement
– numactl – CPU and memory pinning

• One way to test if you get a gain is to mistune it.
• Libvirt now supports some NUMA placement
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Memory Tuning - NUMA
# numactl --hardware
available: 8 nodes (0-7)
node 0 cpus: 0 1 2 3 4 5
node 0 size: 8189 MB
node 0 free: 7220 MB
node 1 cpus: 6 7 8 9 10 11
node 1 size: 8192 MB
...
node 7 cpus: 42 43 44 45 46 47
node 7 size: 8192 MB
node 7 free: 7816 MB
node distances:
node   0   1   2   3   4   5   6   7 
  0:  10  16  16  22  16  22  16  22 
  1:  16  10  22  16  16  22  22  16 
  2:  16  22  10  16  16  16  16  16 
  3:  22  16  16  10  16  16  22  22 
  4:  16  16  16  16  10  16  16  22 
  5:  22  22  16  16  16  10  22  16 
  6:  16  22  16  22  16  22  10  16 
  7:  22  16  16  22  22  16  16  10 

Internode 
Memory distance 
From SLIT table

Note variation in 
internode distances
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Virtualization Tuning – Using NUMA
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Specifying Processor Details

• Mixed results with CPU type 
and topology

• The Red Hat team is still 
exploring some topology 
performance quirks
– Both model and topology 

• Experiment and see what works 
best in your case



38

CPU Pinning - Affinity

• Virt-manager allows CPU 
selection based on NUMA 
topology

– True NUMA support in 
libvirt

• Virsh pinning allows finer grain 
control

– 1:1 pinning

• Good gains with pinning
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Performance monitoring tools

• Monitoring tools
– top, vmstat, ps, iostat, netstat, sar, perf 

• Kernel tools
– /proc, sysctl, AltSysrq

• Networking
– ethtool, ifconfig

• Profiling
– oprofile, strace, ltrace, systemtap, perf
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Wrap up

• KVM can be tuned effectively 
– Understand what is going on under the covers
– Turn off stuff you don't need
– Be specific when you create your guest
– Look at using NUMA or affinity
– Choose appropriate elevators (Deadline vs CFQ)
– Choose your cache wisely
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For More Information

• KVM Wiki
– http://www.linux-kvm.org/page/Main_Page

• irc, email lists, etc
– http://www.linux-kvm.org/page/Lists%2C_IRC

• libvirt Wiki
– http://libvirt.org/

• New, revamped edition of the “Virtualization Guide”
– http://docs.redhat.com/docs/en-

US/Red_Hat_Enterprise_Linux/index.html 
– Should be available soon !
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