
1

KVM PERFORMANCE

 IMPROVEMENTS AND

 OPTIMIZATIONS

Mark Wagner
Principal SW Engineer, Red Hat
August 14, 2011

2

Overview

• Discuss a range of topics about KVM performance
– How to improve out of the box experience
– But crammed into 30 minutes

• Use libvirt where possible
– Note that not all features in all releases

3

Before we dive in...

RHEL6-default
0

50

100

150

200

250

300

350

400

450

Guest NFS Write Performance - are we sure ?
Is this really a 10Gbit line ?

T
hr

o
ug

hp
ut

 (
 M

B
yt

es
 /

 s
ec

o
nd

)

By default
the rtl8139

device is chosen

Arrow shows
improvement

4

Agenda

• Low hanging fruit
• Memory
• Networking
• Block I/O basics
• NUMA and affinity settings
• CPU Settings
• Wrap up

5

Recent Performance Improvements

• Performance enhancements in every component

Component Feature

CPU/Kernel NUMA – Ticketed spinlocks; Completely fair scheduler;
Extensive use of Read Copy Update (RCU)
Scales up to 64 vcpus per guest

Memory Large memory optimizations: Transparent Huge Pages is
ideal for hardware based virtualization

Networking Vhost-net – a kernel based virtio w/ better throughput and
latency. SRIOV for ~native performance

Block AIO, MSI, scatter gather.

6

Remember this ?

RHEL6-default
0

50

100

150

200

250

300

350

400

450

Guest NFS Write Performance

T
hr

o
ug

hp
ut

 (
 M

B
yt

es
 /

 s
ec

o
nd

)

Impact of not specifying
OS at guest creation

7

Be Specific !

• virt-manager will:

– Make sure the guest
will function

– Optimize as it can

• The more info you provide the
more tailoring will happen

Specify the
OS details

8

Specify OS + flavor

• Specifying Linux will get you:
– The virtio driver

– If the kernel is recent
enough the vhost_net
drivers

9

I Like This Much Better

Default vhost virtio
0

50

100

150

200

250

300

350

400

450

Guest NFS Write Performance
Impact of specifying OS Type at Creation

T
hr

o
ug

hp
ut

 (
 M

B
yt

es
 /

 s
ec

o
nd

)

12.5 x

10

Memory Tuning – Huge Pages

• 2M pages vs 4K standard Linux page

– Virtual to physical page map is 512 times smaller

– TLB can map more physical page resulting fewer misses

• Traditional Huge Pages always pinned

• We now have Transparent Huge Pages

• Most databases support Huge Pages

• Benefits not only Host but guests

– Try them in a guest too !

11

Transparent Huge Pages

No-THP THP
K

50K

100K

150K

200K

250K

300K

350K

400K

450K

500K

SPECjbb workload
24-cpu, 24 vcpu Westmere EP, 24GB

guest
bare metal

T
ra

ns
a

ct
io

ns
 P

er
 M

in
ut

e

30%
25%

12

Network Tuning Tips

• Separate networks for different functions

– Use arp_filter to prevent ARP Flux

• echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter

• Use /etc/sysctl.conf for permanent

• Packet size - MTU

– Need to make sure it is set across all components

• Don't need HW to bridge intra-box communications

– VM traffic never hits the HW on same box

– Can really kick up MTU as needed

13

KVM Network Architecture - VirtIO

• Virtual Machine sees paravirtualized
network device – VirtIO
– VirtIO drivers included in Linux Kernel
– VirtIO drivers available for Windows

• Network stack implemented in userspace

14

KVM Network Architecture
Virtio

Context switch host
kernel <-> userspace

15

1 21 64
195

765
2048

6147
24573

65536
0

50

100

150

200

250

300

350

400

Network Latency virtio

Guest Receive (Lower is better)

Virtio
Host

Message Size (Bytes)

L
a

te
n

cy
 (

u
se

cs
)

Latency comparison

4X gap in latency

16

KVM Network Architecture – vhost_net

• Moves QEMU network stack from
userspace to kernel

• Improved performance

• Lower Latency

• Reduced context switching

• One less copy

17

1 19 51
131

387
1027

3075
8195

24579
65539

0

50

100

150

200

250

300

350

400

Network Latency - vhost_net

Guest Receive (Lower is better)

Virtio
Vhost_net
Host

Message Size (Bytes)

L
a

te
n

cy
 (

u
se

cs
)

Latency comparison

Latency much closer
to bare metal

18

Host CPU Consumption virtio vs vhost_net

32-v
host

32-v
io

12
8-v

host

12
8-v

io

51
2-v

host

51
2-v

io

204
8-v

host

204
8-v

io

819
2-v

host

819
2-v

io

3276
8-v

host

3276
8-v

io
0

5

10

15

20

25

30

35

40

45

Host CPU Consumption, virt io vs Vhost
8 Guests TCP Receive

%usr
%soft
%guest
%sys

Message Size (Bytes)

%
 T

o
ta

l H
o

st
 C

P
U

 (
L

o
w

er
 is

 B
et

te
r)

Major difference
is usr time

Two columns
is a data set

19

vhost_net Efficiency

32 64
128

256
512

1024
2048

4092
8192

16384
32768

65507
0

50

100

150

200

250

300

350

400

8 Guest Scale Out RX Vhost vs Virtio - % Host CPU
Mbit per % CPU netperf TCP_STREAM

Vhost
Virtio

Message Size (Bytes)

M
bi

t
/

%
 C

P
U

 (
bi

gg
er

 is
 b

et
te

r)

20

KVM Architecture – Device Assignment vs SR/IOV

Device Assignment
SR-IOV

21

KVM Network Architecture – PCI Device Assignment

• Physical NIC is passed directly to guest
– Device is not available to anything else on the host

• Guest sees real physical device

– Needs physical device driver

• Requires hardware support

Intel VT-D or AMD IOMMU

• Lose hardware independence

• 1:1 mapping of NIC to Guest

• BTW - This also works on some I/O controllers

22

KVM Network Architecture – SR-IOV

• Single Root I/O Virtualization

New class of PCI devices that present multiple virtual devices that
appear as regular PCI devices

• Guest sees real physical device

– Needs physical (virtual) device driver

• Requires hardware support

• Actual device can still be shared

• Low overhead, high throughput

• No live migration – well its difficult

• Lose hardware independence

23

Latency comparison

1 19 51
131

387
1027

3075
8195

24579
65539

0

50

100

150

200

250

300

350

400

Network Latency by guest interface method

Guest Receive (Lower is better)

Virtio
Vhost_net
SR-IOV
Host

Message Size (Bytes)

L
a

te
n

cy
 (

u
se

cs
)

SR-IOV latency close
to bare metal

SR-IOV latency close to bare metal

24

KVM w/ SR-IOV Intel Niantic 10Gb Postgres DB
 T

h
ro

u
g

h
p

u
t

in
 O

rd
er

/m
in

 (
O

P
M

)

69,984

86,469
92,680

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
100,000

1 Red Hat KVM
bridged guest

1 Red Hat KVM
SR-IOV guest

1 database instance
(bare metal)

Total OPM

DVD Store Version 2 results

93%
Bare Metal

76%
Bare Metal

25

I/O Tuning - Hardware

• Know your Storage
– SAS or SATA?
– Fibre Channel, Ethernet or SSD?
– Bandwidth limits

• Multiple HBAs
– Device-mapper-multipath
– Provides multipathing capabilities and LUN persistence

• How to test
– Low level I/O tools – dd, iozone, dt, etc

26

I/O Tuning – Understanding I/O Elevators

● Deadline

– Two queues per device, one for read and one for writes

– IOs dispatched based on time spent in queue
• CFQ

– Per process queue

– Each process queue gets fixed time slice (based on process priority)
• Noop

– FIFO
– Simple I/O Merging
– Lowest CPU Cost

• Can set at Boot-time
– Grub command line – elevator=deadline/cfq/noop

• Or Dynamically – per device
– echo “deadline” > /sys/class/block/sda/queue/scheduler

27

Virtualization Tuning – I/O elevators - OLTP

1Guest 2 Guests 4 Guests
K

50K

100K

150K

200K

250K

300K

Performance Impact of I/O Elevators on OLTP Workload
Host running Deadline Scheduler

Noop
CFQ
Deadline

T
ra

ns
a

ct
io

ns
 p

er
 M

in
ut

e

28

Virtualization Tuning - Caching

• Cache=none
– I/O from the guest in not cached

• Cache=writethrough
– I/O from the guest is cached and written through on the host
– Potential scaling problems with this option with multiple guests

(host cpu used to maintain cache)

• Cache=writeback - Not supported

29

Effect of I/O Cache settings on Guest performance

1Guest 4Guests
K

100K

200K

300K

400K

500K

600K

700K

800K

900K

OLTP like workload

FusionIO storage

Cache=WT
Cache=none

T
ra

ns
a

ct
io

n
P

er
 M

in
ut

e

30

I/O Tuning - Filesystems

B

• Configure read ahead
– Database (parameters to configure read ahead)
– Block devices (getra , setra)

• Asynchronous I/O
– Eliminate Synchronous I/O stall
– Critical for I/O intensive applications

31

AIO – Native vs Threaded (default)

10U 20U
K

100K

200K

300K

400K

500K

600K

700K

800K

900K

1000K

Impact of AIO selection on OLTP Workload

"cache=none" setting used - Threaded is default

AIO Threaded
AIO Native

Number of Users (x 100)

T
ra

ns
a

ct
io

ns
 P

er
 M

in
ut

e

Configurable per device (only by xml configuration file)
Libvirt xml file - driver name='qemu' type='raw' cache='none' io='native'

32

Remember Network Device Assignment ?

• Device Assignment
– It works for Block too !
– Device Specific
– Similar Benefits
– And drawbacks...

33
34

KVM VirtIO KVM/PCI-PassThrough Bare-Metal
k

2k

4k

6k

8k

10k

12k

14k

16k

18k

20k

SAS Mixed Analytics Workload - Metal/KVM
Intel Westmere EP 12-core, 24 GB Mem, LSI 16 SAS

SAS system
SAS Total

T
im

e
to

 c
o

m
pl

et
e

(s
ec

s)

6% longer

25% longer

• Block Device Passthrough - SAS Workload

34

NUMA (Non Uniform Memory Access)

• Multi Socket – Multi core architecture

– NUMA is needed for scaling

• Keep memory latencies low

– Linux completely NUMA aware

– Additional performance gains by enforcing NUMA placement

– Still some “out of the box” work is needed

• How to enforce NUMA placement
– numactl – CPU and memory pinning

• One way to test if you get a gain is to mistune it.
• Libvirt now supports some NUMA placement

35

Memory Tuning - NUMA
numactl --hardware
available: 8 nodes (0-7)
node 0 cpus: 0 1 2 3 4 5
node 0 size: 8189 MB
node 0 free: 7220 MB
node 1 cpus: 6 7 8 9 10 11
node 1 size: 8192 MB
...
node 7 cpus: 42 43 44 45 46 47
node 7 size: 8192 MB
node 7 free: 7816 MB
node distances:
node 0 1 2 3 4 5 6 7
 0: 10 16 16 22 16 22 16 22
 1: 16 10 22 16 16 22 22 16
 2: 16 22 10 16 16 16 16 16
 3: 22 16 16 10 16 16 22 22
 4: 16 16 16 16 10 16 16 22
 5: 22 22 16 16 16 10 22 16
 6: 16 22 16 22 16 22 10 16
 7: 22 16 16 22 22 16 16 10

Internode
Memory distance
From SLIT table

Note variation in
internode distances

36

Virtualization Tuning – Using NUMA

4Guest-24vcpu-56G 4Guest-24vcpu-56G-NUMA
K

50K

100K

150K

200K

250K

300K

350K

400K

Impact of NUMA in multiguest OLTP

location,location,location

Guest 4
Guest 3
Guest 2
Guest 1

T
ra

ns
a

ct
io

ns
 P

er
 S

ec
o

nd

37

Specifying Processor Details

• Mixed results with CPU type
and topology

• The Red Hat team is still
exploring some topology
performance quirks
– Both model and topology

• Experiment and see what works
best in your case

38

CPU Pinning - Affinity

• Virt-manager allows CPU
selection based on NUMA
topology

– True NUMA support in
libvirt

• Virsh pinning allows finer grain
control

– 1:1 pinning

• Good gains with pinning

39

Performance monitoring tools

• Monitoring tools
– top, vmstat, ps, iostat, netstat, sar, perf

• Kernel tools
– /proc, sysctl, AltSysrq

• Networking
– ethtool, ifconfig

• Profiling
– oprofile, strace, ltrace, systemtap, perf

40

Wrap up

• KVM can be tuned effectively
– Understand what is going on under the covers
– Turn off stuff you don't need
– Be specific when you create your guest
– Look at using NUMA or affinity
– Choose appropriate elevators (Deadline vs CFQ)
– Choose your cache wisely

41

For More Information

• KVM Wiki
– http://www.linux-kvm.org/page/Main_Page

• irc, email lists, etc
– http://www.linux-kvm.org/page/Lists%2C_IRC

• libvirt Wiki
– http://libvirt.org/

• New, revamped edition of the “Virtualization Guide”
– http://docs.redhat.com/docs/en-

US/Red_Hat_Enterprise_Linux/index.html
– Should be available soon !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

