

KVM and Big VMs

KVM Forum 2012

Andrew Theurer
IBM Linux Technology Center

Topics

● Motivation
● Current state
● NUMA
● Locking
● IO
● Example workload: OLTP

Motivation

● Why Big VMs?
– Virtualization not just about consolidating under-utilized

servers
– There are workloads which are “big” on bare-metal

● Users would like to move those to “the cloud”

– Perhaps some day all enterprise servers will have
hypervisor built in

– KVM should be able to do anything bare-metal can do
well

How Well Do KVM VMs scale today?

● Quite well!
● In April, we published an SAP benchmark with 80

vCPU VM [1]
– This is #1 among the virtualized x86 results:

– IBM x3850X5 with KVM: 10700 users
– Cisco UCS B230 M2 with KVM: 5100 users
– Fujitsu RX300 S6 with VMware: 4600 users

● We also demonstrated #1 disk I/O result [2]:
– 1.6 million disk I/O ops/sec for host (4k random read/write)

Is there more we can do?

● Yes, of course
– NUMA
– Locking
– Virtual IO

NUMA

● The use of a NUMA topology within a VM is important for
two reasons:
– Promoting a CPU-Memory locality

● This requires help from the host to place vCPUs and memory
properly

– Maintaining “data partitioning”
● This can at times be far more important than CPU-Memory locality!
● The OS likes to partition resources based on NUMA topology

● You can specify a NUMA topology for a VM today, but this is not
done automatically

NUMA and Data Partitioning

● The number of NUMA nodes inside the VM directly effects the
VM's performance
– Kernel compile on 80-vcpu VM on 80-cpu host:
– 1 NUMA node: 292 seconds
– 4 NUMA nodes (same as host): 189 seconds (54% better performance)

● This is because many locks are per-node, and more nodes =
finer grain locks, less lock contention
– 42% reduction in total lock-wait time (as seen by /proc/lock_stat)
– 97% reduction in zone->lru_lock wait time

NUMA and CPU-memory Locality

● Current Linux host scheduler does not do enough to keep vCPUs and
memory [for same VM] node-local

● This is further complicated with very large VMs, where vCPUs and
memory cannot be contained in a single host NUMA node [like
previous example with 80-vCPU VM]

● The optimal host will recognize smaller VMs and place them wholly in
a host NUMA node

● Optimal host will also recognize larger VMs and partition vCPU
threads and VM memory, such that vCPUs and memory belonging to
vNode X will be placed together in host Node Y.
– This can be difficult, as there is no explicit way to indicate to the host

what Qemu [vCPU] threads and what Qemu memory belong “together”.
– Host must figure out which threads access which memory and locate

vCPUs/memory accordingly

NUMA and CPU-memory Locality
● AutoNUMA & SchedNUMA

– Two different solutions to this problem, both have some similar concepts,
but not exactly the same solution.

– Some basic testing for both:
● Host with 4 NUMA nodes, 40-cores / 80-threads
● Three different configurations tested: 16 x 5-vcpu, 8 x 10-vcpu, and 4

x 20-vcpu VMs

– vCPUs = host CPU threads, no CPU over-commit
– Dbench run in tmpfs (no I/O)

16 x 5-vCPU 8 x 10-vCPU 4 x 20-vCPU
0

5000

10000

15000

20000

25000

30000

35000

Aggregate Dbench Throughput (MB/sec)

Baseline
Manual Binding
AutoNUMA
SchedNUMA

Host CPU Usage

Host Memory Usage

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

33

2

23

84

32

10

12

4

VM resource usage

Example 5-VCPU VM with SchedNUMA

Node3
Node2
Node1
Node0

Host CPU Usage

Host Memory Usage

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1

5

99

95

VM Resource usage

Example 5-vCPU VM with AutoNUMA

Node3
Node2
Node1
Node0

NUMA and CPU-memory Locality

● AutoNUMA analysis:
– Very good at grouping vCPU threads

and memory on 5, 10, and 20-vCPU
VMs

– Some host overhead in handling page
faults (host perf callgraph)

● 82% raw_spin_lock()

– tdp_page_fault()

– kvm_mmu_page_fault()

– handle_ept_violation()

– Can be mitigated somewhat by lower
page scanning rate

– Would benefit from native THP migration

● SchedNUMA analysis
– Typically majority of VM memory ends

up in single host NUMA node, but vCPU
is spread out

NUMA and CPU-memory Locality

● VCPU & memory placement for really big VMs
– Doing this placement manually is tricky today

– You can specify where vCPUs get to run
– But you cannot specify multiple locations for VM memory

● You can specify a -single- location for memory, but we need more than one
location for a large, multi-node VM.

● There is a trick to get around this:

VM
vnode0

memory

CPU

vnode1

memory

CPU

vnode3

memory

CPU

vnode2

memory

CPU

Host
node0

memory

CPU

node1

memory

CPU

node3

memory

CPU

node2

memory

CPU

– For the example to the left: reserve the number of huge-
pages equal to VM memory (and no more) – but make sure
the reservation is spread equally among 4 host nodes

– In the VM XML configuration, configure for huge-pages
– When VM is started either:

● Monitor /sys/devices/system/node/node[0-3]/meminfo
to determine which node-order hugepages were
allocated

● Use pagemapscan [3] to tell you where the VM
memory is located on the host

– Once you know where the VM's vnode memory is, you can
then pin vCPUs to match

1) One of
the host
node's

huegpages
will be

depleted
just as all of

vnode0's
memory is
allocated

2) This
process will
repeat for

vnodes 1-3,
placing

each VM
node's

memory in
exactly one
host node

NUMA and CPU-memory Locality

● VCPU & memory placement for really big VMs
– Does placing vCPU and VM memory properly help?

● 80-vCPU VM Kernel compile times reduced another 5%

● 80-vCPU VM SPECjbb2005: 45% performance improvement

– Ideally, we should never have to do this manually
● AutoNUMA, schedNUMA, etc, should do this for us....

Locking
● The expected behavior of spin_lock() can change when the

virtual CPU has different characteristics of a physical CPU.
● When vCPUs do not have simultaneous execution, spin time

can be significantly increased. This well known problem, lock
holder preemption, has been addressed with different solutions
to date
– Para-virtual

● Accurate, efficient, but requires OS changes (and not just one's favorite OS)

– HW detection of spin
● Good HW support (PLE, PF)

● More challenging for larger VMs

● Possibly false positives

vcpu0

vcpu1

time

Acquires lock,
but then

preempted

Wants lock
and spins

vcpu0

Releases
lock

Acquires
lock, then
preempted

Wants lock
and spins

Dealing with Lock-holder Preemption

● We concentrate on HW based solution to PLE
– If at all possible, it is desirable to not implement changes in the guest OS

● Current HW approach:
– vCPUs which spin are detected by HW and cause vm_exit
– While in host, vCPU yields time to another runnable-but-not-running

sibling vCPU
● who knows, maybe that vCPU is the one holding a lock (or maybe

not!)
● This is different from just a “yield()” in that we are specifying who we

want to give to

– This process will hopefully get the preempted lock-holding vCPUs
running again

● Today the HW approach works extremely well for VMs ~10 vCPU or less
● However, for larger VMs, the current approach does not work as well

● Issues with current HW approach:
– The more vCPUs in a VM, the more candidate vCPUs to

yield to
– PLE handler with yield_to() is not a cheap operation

● vCPU-to-task lookup
● Double run-queue lock
● This can use over 50% of all CPU!

– The more vCPUs in a VM, the more likely there will be lock
contention

● More vCPUs spinning
● More exits & double run-queue locks

– Possible that HW may detect spin too aggressively
● VM might exit when there is no lock holder preemption
● And still pay the expense of a yield_to()

Dealing with Lock-holder Preemption

Example of PLE/yield_to() Working Well
below is a bitmap of 'perf sched map' with PLE enabled

VMs have 10 vCPUs and 2x CPU over-commit
Each VM a unique color (with different brightness per vCPU)

~4 milliseconds

~200 microseconds

One VM's
vCPU

threads
(10)

H
o

st
 C

P
U

s

A switch from one
task to another

Example of PLE/yield_to() not Working Well
below is a bitmap of 'perf sched map' with PLE enabled

VMs now have 20 vCPUs 2x CPU over-commit
Each VM a unique color (with different brightness per vCPU)

~4 milliseconds

~200 microseconds

One VM's
vCPU

threads

H
o

st
 C

P
U

s

One VM's
vCPU

threads

Cost of
yield_to()

way too high
given the

frequency of
spin/exits

Task
switching at
much higher
frequency!

● Observations from 10 to 20 vCPU VMs:
– The detection of spin/exits in VM goes up massively
– Once this happens, lock contention in host goes up massively

from double-runqueue lock
– As vCPU count increases, the number of candidate vCPUs to

yield_to() also goes up
● For example: 20-vcpu VM @2.0x CPU over-commit may have, on average,

10 vcpus which are preempted
● How does one decide which vCPU to yield to?
● Of the 10, there may be only 1 holding a lock
● Other 9 may not need to run immediately
● Result is a lot of unwanted yield_to() -and a lot of overhead to do so

Dealing with Lock-holder Preemption

● Some potential fixes [to improve yield_to()]
– Lower cost to determine candidate vcpus

● Check if target vcpu to yield_to() is running before double runqueue lock

– Better predict the candidate vcpu to yield_to()
● Heuristics on vcpu spin activity

Both of these help, but do not approach maximum performance potential
● Alternative fix – if yield_to() is not helping, then encourage vCPUs from

same VM to run together
– Spinning vcpus have two possible reactions

● yield_to(), but change this to only one per jiffie
– Any more often is not considered productive
– This works for smaller VMs and is essentially same behavior as current code

● Other exits must simply yield()
– With the assumption that when they do get to run again, the lock-holding vcpu will

also be running
– It is important that spinning vcpus yield to other VMs and not their sibling vcpus!

Must encourage all same-VM vcpus to run/not-run at the same time

Dealing with Lock-holder Preemption

~4 milliseconds

~200 microseconds

One VM's
vCPU

threads

H
o

st
 C

P
U

s

Example of Throttled yield_to()
below is a bitmap of 'perf sched map'

VMs with 20 vCPUs and 2x CPU over-commit
Each VM a unique color (with different brightness per vCPU)

Much more
likely to run all
vcpu threads
at same time,

which
significantly
lowers the
lock-holder
preemption

Task
switching
back to a

reasonable
rate

● Results
– 8 x 20-vcpu VMs, running dbench workload in tmpfs (no disk IO):

● 3.6 with PLE off: 394 MB/sec
● 3.6 with PLE on: 8175 MB/sec
● 3.6 with PLE off & gang-scheduling: 32001 MB/sec
● 3.6 with PLE on & throttled yield_to() 30614 MB/sec

● Throttled yield_to() works best when yielding to tasks which are not
vcpus from same VM
– If this is not met, throttled yield_to() will still offer better performance, but not the

significant jump we are looking for
– There is no policy currently in the scheduler to enforce non-shared runqueue

● These tests used restricted vcpu placement such that no vcpus from same VM were on
same runqueue

● One could possibly create a scheduler policy to always ensure same-VM vcpu threads
do not share a runqueue

● Or... maybe one could use PLE to correct this situation only when it's necessary

– On detection of high frequency of yields from same vcpu, check for sibling vcpus on
same runqueue, and swap tasks from neighbor runqueue to remedy

Dealing with Lock-holder Preemption

● One other problem: detecting spin & false positives
– HW may detect a spin but there is actually no lock-holder preemption
– Why? Some locks simply have a longer spin because the lock is held

longer
– With PLE, we can adjust the sensitivity (ple_window), but what's the right

setting?
– Even when there really is no CPU over-commit, the exit handler is still very

high overhead
● Simply discovering that there are no candidate vcpus to yield to is expensive
● We might be able to quit early if the host was certain there was no over-commit

– But that can be tricky, as each vcpu could be subjected to different levels of
over-commit. The detection itself could get too costly

– However, implementing the throttled yield_to() reduces exit handler
cost significantly

● Example: Time to boot 80-vcpu VM: (no CPU over-commit here!)
– 3.6 with PLE on: 369 seconds
– 3.6 with PLE off: 25 seconds
– 3.6 PLE & throttled yield(): 28 seconds

– Using a throttled yield_to() may eliminate the need to tune ple_window

Dealing with Lock-holder Preemption

● Disk I/O via PCI-pass-through is quite good
– Demonstrated 1.6 millions IOPs this year (4k random read/write)
– However, VM scalability it is actually limited by maximum PCI device limit

today
● Currently limited to 8 devices

– We demonstrated 860,000 IOPs per VM
– More can be done with higher performing PCI devices

● We believe improving virtio is much more relevant to users
– Current virtio-blk is currently limited to about 150,000 IOPs

● This is due to the Big Qemu Lock

– There are multiple alternatives
● Data-plane

– In-Qemu, could potentially support Qemu disk formats (qcow, etc)
● Vhost-blk

– In-kernel
● Vhost-scsi

– Coupled with tcm_vhost driver introduces some really interesting options
– We expect all of these solutions to scale well. We are now focusing on effciency

I/O Scalability

I/O Scalability

● OLTP = Online Transaction Processing
– Big Database (will not fit in memory)
– Lots of IO (hundreds of thousands of IOPS)

● Our test-bed:
– 8 Intel Westmere-EP cores (16 threads)
– 144 GB memory
– 42 SSD

● Software:
– RHEL VM & IBM DB2

OLTP Workload

Baremetal
Baseline KVM

KSM off
Data-plane

PCI-pass-through
Paravirt EOI

0

20

40

60

80

100

120

OLTP Throughput

● Performance & Scalability challenges:
– PLE

● No over-commit, but was disabled due to some exits and kvm_vcpu_on_spin() overhead

– KSM
● KSM is engaged at a certain memory threshold

● We allocated all but 3G of host memory for this VM which triggered KSM

● KSM can break down a significant number of transparent huge-pages, degrading
performance up to 10%

– Virtio-blk
● Big Qemu lock causes disk I/O bottleneck which limits OLTP transaction rate to less than ½

● Data-plane showed significant improvement, but still below PCI-pass-through

● Vhost-blk and vhost-scsi will be tested eventually

– PCI-pass-through
● KVM overhead from high interrupt rate -efficient I/O dependent on coalescing interrupts to

lower rate

● Lowering rate may be in direct conflict of a low latency database transaction log device

– EOI
● Pv-EOI reduced total vm_exits by 20%

OLTP Analysis

● Performance & Scalability challenges:
– NUMA memory & vCPU placement

● CPU-memory locality critical for this workload

● Manual placement was used – plan to test autoNUMA/schedNUMA

– KVMclock
● We have observed that gettimeofday() can be as much at 10x slower with kvmclock vs tsc

● Our tests did not include user-space gettimeofday() for kvmclock (we have been just using
tsc) – but we will be testing this soon

● There are quite a number of users of the clock, like delay accounting, cgroups, the database
application, etc.

– Timer Interrupts
● Dropping timer interrupts to 100Hz in host and guest can improve performance 3%

● We'd expect maybe 1% improvement from bare-metal

– In-guest IPI
● These are much more expensive than host IPI

● Guest IPI → vm_exit → host IPI → virtual IRQ injection

● For a database with high transaction rates, this is major influence on performance

– Lots of signalling between threads to indicate a transaction is “logged”
– 7.13% CPU in reschedule_interrupt() for KVM test
– 0.09% CPU in reschedule_interrupt() for bare-metal test

OLTP Analysis (continued)

Questions?

[1] SAP SD 2-tier results, http://www.sap.com/solutions/benchmark/sd2tier.epx
[2] “Achieving Unprecedented Virtualization Results for Maximum IOPS per Host”,
ftp://public.dhe.ibm.com/linux/pdfs/2012RHEL_KVM_Hypervisor_Performance_Brief_19_v4.pdf
[3] pagemapscan.c, https://docs.google.com/open?id=0B6tfUNlZ-14wTEYzM1FjVUo4QW8

Thanks!

Thank you to my team members for their help: Barry Ardnt, Karl Rister, Khoa Huynh, Mark Peloquin, Steve Dobbelstein, Steve
Pratt, and Tom Lendacky

A special thank you to all to the KVM & Qemu developers for their help and to Red Hat for their support

http://www.sap.com/solutions/benchmark/sd2tier.epx
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CCwQFjAB&url=ftp%3A%2F%2Fpublic.dhe.ibm.com%2Flinux%2Fpdfs%2F2012RHEL_KVM_Hypervisor_Performance_Brief_19_v4.pdf&ei=CISVULyUFuaBywHYrIC4BA&usg=AFQjCNFluHMXYSwmTYoWptYtCvDijrzOqQhttp://www.redhat.com/resourcelibrary/reference-architectures/rhel-kvm-hypervisor-achieving-unprecedented-virtualization-results-for-maximum-iops-per-host
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CCwQFjAB&url=ftp%3A%2F%2Fpublic.dhe.ibm.com%2Flinux%2Fpdfs%2F2012RHEL_KVM_Hypervisor_Performance_Brief_19_v4.pdf&ei=CISVULyUFuaBywHYrIC4BA&usg=AFQjCNFluHMXYSwmTYoWptYtCvDijrzOqQhttp://www.redhat.com/resourcelibrary/reference-architectures/rhel-kvm-hypervisor-achieving-unprecedented-virtualization-results-for-maximum-iops-per-host
ftp://public.dhe.ibm.com/linux/pdfs/2012RHEL_KVM_Hypervisor_Performance_Brief_19_v4.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

