

Live Migration: Even faster, now

with a dedicated thread!

Juan Quintela <quintela@redhat.com>

Orit Wasserman <owasserm@redhat.com>

Vinod Chegu <chegu_vinod@hp.com>

KVM Forum 2012

mailto:quintela@redhat.com
mailto:owasserm@redhat.com

2

Agenda

● Introduction

● Migration thread

● Live migration of large guests

3

Introduction

● The problem:

Moving a guest running in a host to a different host
● To make things interesting:

Do it without stopping the guest
● Even more interesting:

And do it fast
● Yes, there are some trouble ahead

4

Copy in

● Copy one

● At some point we call

qemu_fflush()

● That calls:

buffered_put_buffer()

Guest memory

QEMUFile

qemu_put_file()

5

Copy again

● Copy two

● Dynamic buffer

● Grows as needed

● AKA, we can have more
copies here

QEMUFile

QEMUBufferedFile

buffered_put_buffer()

6

Slow me more

● Copy three

● We can do this
synchronously

QEMUBufferedFile

OS buffers

send()

7

Migration bitmap

● For each page we use:
● 1 bit for migration
● 1 bit for VGA
● 1 bit for TCG (the mother of all the problems)

● So we end using 1 byte/page

● We can move to three bitmaps of 1bit/page
● 1 VGA: not all memory regions need it
● 1 migration
● 1 TCG: not used while in kvm mode

8

Bitmap sizes

● We don't need the other bits during migration

● With bigger guests, we blow the cache obviously

1GB 16GB 64GB 256GB 512GB

1 bit/page 32KB 512KB 2MB 8MB 16MB

1 byte/page 256KB 4MB 16MB 64MB 128MB

9

Bitmap Sync: Fast algorithm ever

● Qemu alloc a bitmap (1 bit/page) and calls kvm

● KVM kernel module: fill the bitmap

● Qemu kvm wrapper: walk the bitmap and fill the dirty
bitmap (1 byte/page)

● Migration code: walk the dirty bitmap, and create a
new bitmap (1 bit/page)

● Why it takes 8s to synchonize the bitmap for a 256GB
guest? Any idea?

10

Migration thread: Why?

● Reduce the number of copies

● Separate memory walking and socket writing

● Do writes synchronously (we are in our own thread)

● Makes much, much easier to do bandwidth
calculations

● Buffered file not needed anymore

11

Migration thread: How?

while (true) {

 copy_some_dirty_pages_to_buffer();

 write_buffer_to_the_socket();

}

12

Migration thread: How? (II)

● while (true) {

 mutex_lock_iothread();

 copy_some_dirty_pages_to_buffer();

 mutex_unlock_iothread();

 write_buffer_to_the_socket();

}

13

Downtime

synchronize_bitmap(); /* 8 seconds */

write_all_pending_memory_to_buffer();

write_buffer_to_socket();

● max_downtime = 2s

● max_speed = 10Gb

● Buffer ~ 2GB

● I hope we were not migrating because we were low of
memory

●

Live migration of large guests: Motivation

• Increasing need for very large sized VM’s
– Non-enterprise class of workloads (16G-64G)
– Enterprise workloads (32G - much higher) . E.g. scale-up in-

memory DBs
• Need good scaling & predictable performance
• Mission critical SLAs and HA.

• Demands on Live guest migration
– Convergence and predictable total migration time.
– Freeze time (aka “Downtime”) – how live is live guest migration?

• Typically < 5 seconds to avoid dropped tcp/http connections (some apps
are more sensitive < 2 seconds)

– Performance impact on the workload.

Recent optimizations
(Idle guest)

Migration speed = 10G & “downtime” = 2secs

64G/10vcpu (1.4G)

128G/10vcpu (2.4G)

256G/20vcpu (4.2G)

512G/40vcpu (8.2G)

768G/80vcpu (12.1G)

0 200 400 600 800 1000 1200 1400 1600

58.5

118

259

599

952

107

214

451

1090

1522

Total migration time

Mig-thread 20121029 qemu.git 1.2.50

seconds

64G/10vcpu

128G/10vcpu

256G/20vcpu

512G/40vcpu

768G/80vcpu

0 5 10 15 20 25

2.7

3.3

3.7

4.6

6.7

5

6

8

18

24

Actual "Downtime"

seconds

Observations

• Bitmap synch-ups for large
guests

– Major contributor to the
actual “downtime”.

– Guest freezes during the start
of the migration !

• Utilization of allocated B/W
– Peaks at ~3 Gbps.

– Perhaps not enough data
ready to be sent through
the allocated pipe. i.e.
Unable to saturate.

64G/10vcpu

128G/10vcpu

256G/20vcpu

512G/40vcpu

768G/80vcpu

0 1 2 3 4 5 6 7 8

0.5

1

2

3.9

6

2.2

2.3

1.7

0.7

0.7

Actual "Downtime"

bitmap synch time data+state transfer time

seconds

SLOB
(256G/80Vcpus, SGA:50G, 96 users)

Migration speed =10G , “downtime” = 2secs

~15-20% degradation in performance during iterative pre-copy phase.

Mig-thread-20121029

qemu.git-1.2.50

0 100 200 300 400 500 600

358

542

Total migration time

seconds

0 1 2 3 4 5 6 7 8

3.8

7.5

Actual "Downtime"

seconds

OLTP workload

• Swingbench used to emulate an OLTP type
workload

– 40% of the guest memory is SGA.
– Using tmpfs instead of real I/O (Note: experiments with I/O

will follow later)

OLTP workload
(128G/80VCPUs, 40% SGA, 75 users (CR, BP, OP, PO, BO))

Migration speed =10G , “downtime” = 4secs

Total migration time : 238 secs, Actual “downtime”: 5.7 secs. Transferred RAM: ~47 GB

Time

“downtime”

Migration starts

OLTP workload
(128G/80Vcpu, 40% SGA)

users
(CR, BP, OP, PO, BO)

% idle Actual
“downtime”

Total
migration

time

20 ~90% 5.5s 195s

40 ~70% 5.8s 236s

60 ~50% 5.4s 261s

80 ~32% 5.3s 255s

100 ~25% No convergence

~10-15 % degradation in TPS during iterative pre-copy phase.

Migration speed =10G , “downtime” = 4secs

Observations

• “Visible” impact of guest freezes at the start of the migration.
• Difficult to converge as the workload gets busy.

• Need further improvements:

• Eliminate the freeze time during the start of the migration.

• Faster Bitmap synch-up

• Improve usage of allocated bandwidth utilization.

• Ability to pin the migration thread to a specific pcpu/numa-node.

• Other alternatives:
• Throttle the workload (via cgroups) – last resort!

• Post-copy + RDMA approaches.

Backup

Configuration

• Hosts:
– Pair of HP ProLiant DL980 G7

Server

• 8 Westmere sockets, 1TB RAM

• 10Gb NIC’s connected back to back.

– MTU set to 9000, irqbalance off etc.

– OS: 3.6.0+

• Large sized guests:

– 2MB Huge pages backed.

– x2apic enabled

– PLE turned off (single guest)

– OS: 3.6.0+

24

Live migration requirements

● Convergence and predictable – user wants

migration to end.

● Downtime – Large downtime can cause guest

timeouts.

● Reasonable performance impact on workload

25

Live migration of large guests convergence
problem why ?

● More memory to transfer

● Memory is always much faster than network

● We don't saturate the network

26

Live migration of large guests profiling

● Guest is 512G with 40vcpu

● Running SLOB with 96 users (all readers) with

tmpfs

● Downtime 2 second and migration speed 10G

● Results:
total time: 685263 milliseconds

downtime: 7854 milliseconds

transferred ram: 45472011 kbytes

total ram: 536879552 kbytes

duplicate: 125410753 pages

27

Live migration of large guest profiling
 9.26% 109658 qemu-system-x86 [kernel.kallsyms] [k] __copy_user_nocache

 7.33% 82716 qemu-system-x86 libc-2.12.so [.] memcpy

 3.72% 41940 qemu-system-x86 qemu-system-x86_64 [.] is_dup_page

 3.57% 324943 qemu-system-x86 [kernel.kallsyms] [k] _raw_spin_lock

 3.20% 344910 qemu-system-x86 [kernel.kallsyms] [k] ktime_get

 2.94% 329581 qemu-system-x86 [kernel.kallsyms] [k] rcu_check_callbacks

 2.84% 31932 qemu-system-x86 qemu-system-x86_64 [.] cpu_physical_memory_get_dirty

 2.20% 24742 qemu-system-x86 qemu-system-x86_64 [.] cpu_physical_memory_clear_dirty_flags

 2.15% 239082 qemu-system-x86 [kvm] [k] vcpu_enter_guest

 1.80% 206891 qemu-system-x86 [kvm_intel] [k] vmx_vcpu_run

 1.76% 19763 qemu-system-x86 qemu-system-x86_64 [.] memory_region_get_dirty

 1.65% 18969 swapper [kernel.kallsyms] [k] intel_idle

 1.37% 151269 qemu-system-x86 [kernel.kallsyms] [k] hrtimer_interrupt

 1.36% 15249 qemu-system-x86 qemu-system-x86_64 [.] cpu_physical_memory_get_dirty_flags

28

Live migration of large guests convergence –
what can we do?

● Reduce data copies – remove data copies from

Qemu code (buffered file)

● Use copy-less networking

● Pinning of the migration thread on a different

core than the the vcpu thread

29

Live migration of large guests convergence –
what can we do?

● Reduce bitmap syncing cost – we need to sync

between the dirty log in the kvm module (kernel)

to Qemu (userspace).

● Reduce bitmap walking cost – by using one bit

per page and 64 bit word operations

30

Live migration of large guests convergence

● Packet batching – improve TCP throughput

● Parallel the work

● Faster network (for example we can bond

several network card to get higher bandwidth)

● RDMA

31

Live migration of large guests convergence –
what can we do?

● Postcopy live migration – start running the

destination immediately, copy the guest memory

to destination when the guest access it. More in

the next session.

● Slow down the guest (CPU throttling) with

cgroup – Red Hat performance team demo in

Oracle Open world

32

Live migration on large guests downtime problem

● Migration bitmap size is proportional to guest
memory size

● Syncing/Walking on larger bitmap is more
expensive

● Downtime increases with guest size

64G/10vcpu

128G/10vcpu

256G/20vcpu

512G/40vcpu

768G/80vcpu

0 1 2 3 4 5 6 7 8

0.5

1

2

3.9

6

2.2

2.3

1.7

0.7

0.7

Actual "Downtime"

bitmap synch time data+state transfer time

seconds

33

Reduce downtime for large guest - solutions

● Copy-less networking

● Reduce data copies – instead of coping guest memory
page we can use pointers (use writev)

● Bitmap per RamBlock (separate bitmap for migration,
VGA and TCG)

● We can use bit per page (optimize the walk by using 64
bit word at a time)

● Use memcpy for syncing with the kernel
● Fine grained locking
● Allocate bitmap on demand

34

Reduce downtime for large guest - solutions

● For large guest the bitmap is too large to be in the
cache. We can divide the bitmap into ranges that fit in
the cache, handle one range at a time.

● Parallelism

35

Live migration on large guests - guest
performance degradation - solutions

● Using EPT/NPT for dirty page logging – the ptes are
64bit long, more work in syncing between kernel and
userspace.

● Reduce copies from kernel to user space by using
shared memory

● 2M huge pages support in migration – the problem is
that the whole 2M page will be marked as dirty, which
result in higher traffic.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide5
	Slide3
	Slide9
	Slide7
	Slide10
	Slide13
	Slide14
	Slide15
	Slide12
	Slide8
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

