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Agenda

● Introduction

● Migration thread

● Live migration of large guests
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Introduction

● The problem:

Moving a guest running in a host to a different host
● To make things interesting:

Do it without stopping the guest
● Even more interesting:

And do it fast
● Yes, there are some trouble ahead
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Copy in

● Copy one

● At some point we call

qemu_fflush()

● That calls:

buffered_put_buffer()

Guest memory

QEMUFile

qemu_put_file()
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Copy again

● Copy two

● Dynamic buffer

● Grows as needed

● AKA, we can have more 
copies here

QEMUFile

QEMUBufferedFile

buffered_put_buffer()
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Slow me more

● Copy three

● We can do this 
synchronously

QEMUBufferedFile

OS buffers

send()
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Migration bitmap

● For each page we use:
● 1 bit for migration
● 1 bit for VGA
● 1 bit for TCG (the mother of all the problems)

● So we end using 1 byte/page

● We can move to three bitmaps of 1bit/page
● 1 VGA: not all memory regions need it
● 1 migration
● 1 TCG: not used while in kvm mode
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Bitmap sizes

● We don't need the other bits during migration

● With bigger guests, we blow the cache obviously

1GB 16GB 64GB 256GB 512GB

1 bit/page 32KB 512KB 2MB 8MB 16MB

1 byte/page 256KB 4MB 16MB 64MB 128MB
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Bitmap Sync: Fast algorithm ever

● Qemu alloc a bitmap (1 bit/page) and calls kvm

● KVM kernel module: fill the bitmap

● Qemu kvm wrapper: walk the bitmap and fill the dirty 
bitmap (1 byte/page)

● Migration code: walk the dirty bitmap, and create a 
new bitmap (1 bit/page)

● Why it takes 8s to synchonize the bitmap for a 256GB 
guest?  Any idea?
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Migration thread: Why?

● Reduce the number of copies

● Separate memory walking and socket writing

● Do writes synchronously (we are in our own thread)

● Makes much, much easier to do bandwidth 
calculations

● Buffered file not needed anymore
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Migration thread: How?

while (true) {

      copy_some_dirty_pages_to_buffer();

      write_buffer_to_the_socket();

}
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Migration thread: How? (II)

● while (true) {

      mutex_lock_iothread();

      copy_some_dirty_pages_to_buffer();

      mutex_unlock_iothread();

      write_buffer_to_the_socket();

}
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Downtime

synchronize_bitmap();  /* 8 seconds */

write_all_pending_memory_to_buffer();

write_buffer_to_socket();

● max_downtime = 2s

● max_speed = 10Gb

● Buffer ~ 2GB

● I hope we were not migrating because we were low of 
memory

●



Live migration of large guests: Motivation

• Increasing need for very large sized VM’s 
– Non-enterprise class of workloads  (16G-64G)
– Enterprise workloads  (32G - much higher) . E.g. scale-up in-

memory DBs
• Need good scaling & predictable performance
• Mission critical SLAs and HA.

• Demands on Live guest migration
– Convergence and predictable total migration time.
– Freeze time (aka “Downtime”) – how live is live guest migration?

• Typically < 5 seconds to avoid dropped tcp/http connections (some apps 
are more sensitive < 2 seconds)

– Performance impact on the workload.



Recent optimizations
(Idle guest)

Migration speed = 10G & “downtime” = 2secs

64G/10vcpu (1.4G)

128G/10vcpu (2.4G)

256G/20vcpu (4.2G)

512G/40vcpu (8.2G)

768G/80vcpu (12.1G)
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Observations

• Bitmap synch-ups for large 
guests

– Major contributor to the 
actual “downtime”.

– Guest freezes during the start 
of the migration !

• Utilization of  allocated B/W
– Peaks at ~3 Gbps.

– Perhaps not enough data 
ready to be sent through 
the allocated pipe. i.e. 
Unable to saturate.
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SLOB
(256G/80Vcpus,   SGA:50G, 96 users)

Migration speed =10G , “downtime” = 2secs

~15-20% degradation in performance during iterative pre-copy phase.

Mig-thread-20121029

qemu.git-1.2.50
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OLTP workload

• Swingbench used to emulate an OLTP type 
workload

– 40% of the guest memory is SGA. 
– Using tmpfs instead of real I/O (Note: experiments with I/O 

will follow later)



OLTP workload
(128G/80VCPUs, 40% SGA, 75 users (CR, BP, OP, PO, BO) )

Migration speed =10G , “downtime” = 4secs

Total migration time : 238 secs, Actual “downtime”: 5.7 secs. Transferred RAM: ~47 GB 

Time

“downtime”

Migration starts



OLTP workload
(128G/80Vcpu, 40% SGA)

# users
(CR, BP, OP, PO, BO)

% idle Actual
“downtime”

Total 
migration 

time

20 ~90% 5.5s 195s

40 ~70% 5.8s 236s

60 ~50% 5.4s 261s

80 ~32% 5.3s 255s

100 ~25% No convergence

~10-15 % degradation in TPS during iterative pre-copy phase.

Migration speed =10G , “downtime” = 4secs



Observations

• “Visible” impact of guest freezes at the start of the migration.
• Difficult to converge  as the workload gets busy.

 
• Need further improvements: 

• Eliminate the freeze time during the start of the migration.

• Faster Bitmap synch-up  

• Improve usage of allocated bandwidth utilization.

• Ability to pin the migration thread to a specific pcpu/numa-node.

• Other alternatives:
• Throttle the workload (via cgroups) – last resort!

• Post-copy + RDMA approaches.



Backup



Configuration

• Hosts:
– Pair of HP ProLiant DL980 G7 

Server 

• 8 Westmere sockets, 1TB RAM

• 10Gb NIC’s connected back to back.

– MTU set to 9000, irqbalance off etc. 

– OS: 3.6.0+ 

 
• Large sized guests:

– 2MB Huge pages backed.

– x2apic enabled

– PLE turned off (single guest)

– OS: 3.6.0+
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Live migration requirements

● Convergence and predictable – user wants 

migration to end.  

● Downtime – Large downtime can cause guest 

timeouts.

● Reasonable performance impact on workload 
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Live migration of large guests convergence 
problem why ?

● More memory to transfer

● Memory is always much faster than network

● We don't saturate the network



26

Live migration of large guests profiling 

● Guest is 512G with 40vcpu

● Running SLOB with 96 users (all readers) with 

tmpfs

● Downtime 2 second and migration speed 10G

● Results:
total time: 685263 milliseconds

downtime: 7854 milliseconds

transferred ram: 45472011 kbytes

total ram: 536879552 kbytes

duplicate: 125410753 pages
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Live migration of large guest profiling 
     9.26%       109658  qemu-system-x86  [kernel.kallsyms]                [k] __copy_user_nocache                       
         
     7.33%        82716  qemu-system-x86  libc-2.12.so                     [.] memcpy                                    

     3.72%        41940  qemu-system-x86  qemu-system-x86_64               [.] is_dup_page
   
     3.57%       324943  qemu-system-x86  [kernel.kallsyms]                [k] _raw_spin_lock                            

     3.20%       344910  qemu-system-x86  [kernel.kallsyms]                [k] ktime_get                                 

     2.94%       329581  qemu-system-x86  [kernel.kallsyms]                [k] rcu_check_callbacks                       

     2.84%        31932  qemu-system-x86  qemu-system-x86_64               [.] cpu_physical_memory_get_dirty
     
     2.20%        24742  qemu-system-x86  qemu-system-x86_64     [.] cpu_physical_memory_clear_dirty_flags 
    
     2.15%       239082  qemu-system-x86  [kvm]                            [k] vcpu_enter_guest                          

     1.80%       206891  qemu-system-x86  [kvm_intel]                      [k] vmx_vcpu_run                              

     1.76%        19763  qemu-system-x86  qemu-system-x86_64               [.] memory_region_get_dirty       

     1.65%        18969          swapper  [kernel.kallsyms]                [k] intel_idle                                

     1.37%       151269  qemu-system-x86  [kernel.kallsyms]                [k] hrtimer_interrupt                         

     1.36%        15249  qemu-system-x86  qemu-system-x86_64        [.] cpu_physical_memory_get_dirty_flags
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Live migration of large guests convergence – 
what can we do? 

● Reduce data copies – remove data copies from 

Qemu code (buffered file)

● Use copy-less networking

● Pinning of the migration thread on a different 

core than the the vcpu thread
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Live migration of large guests convergence – 
what can we do? 

● Reduce bitmap syncing cost – we need to sync 

between the dirty log in the kvm module (kernel) 

to Qemu (userspace).

● Reduce bitmap walking cost – by using one bit 

per page and 64 bit word operations
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Live migration of large guests convergence

● Packet batching – improve TCP throughput

● Parallel the work

● Faster network (for example we can bond 

several network card to get higher bandwidth)

● RDMA
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Live migration of large guests convergence – 
what can we do?

● Postcopy live migration – start running the 

destination immediately, copy the guest memory 

to destination when the guest access it. More in 

the next session. 

● Slow down the guest (CPU throttling) with 

cgroup – Red Hat performance team demo in 

Oracle Open world
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Live migration on large guests downtime problem

● Migration bitmap size is proportional to guest 
memory size

● Syncing/Walking on larger bitmap is more 
expensive

● Downtime increases with guest size
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Reduce downtime for large guest - solutions

● Copy-less networking

● Reduce data copies – instead of coping guest memory 
page we can use pointers (use writev) 

● Bitmap per RamBlock (separate bitmap for migration, 
VGA and TCG)

● We can use bit per page (optimize the walk by using 64 
bit word at a time)

● Use memcpy for syncing with the kernel
● Fine grained locking
● Allocate bitmap on demand 
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Reduce downtime for large guest - solutions

● For large guest the bitmap is too large to be in the 
cache. We can divide the bitmap into ranges that fit in 
the cache, handle one range at a time.

● Parallelism
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Live migration on large guests - guest 
performance degradation - solutions

● Using EPT/NPT for dirty page logging – the ptes are 
64bit long, more work in syncing between kernel and 
userspace.

● Reduce copies from kernel to user space by using 
shared memory

● 2M huge pages support in migration – the problem is 
that the whole 2M page will be marked as dirty, which 
result in higher traffic.
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