

Copyright(c) 2012 NTT Corp. All Rights Reserved.

How to Use KVM's Reverse Mappings
to Improve Scalability

November 7th, 2012

NTT Open Source Software Center
Takuya Yoshikawa

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Table of Contents

● Introduction of this talk
● Why rmap

● What's rmap

● What's achieved
● Fast dirty page logging

● Efficient THP page invalidation

● What we can do next
● Fine-grained dirty logging for live migration

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Introduction

● Why rmap
● My work was mainly done around it last year

– Not intentional
● May be able to get more from it

– Improvement on my previous work

– More use cases

● What's rmap
● Tells us which sptes have mappings to a given guest page

– At least one ulong for each guest page: >= 0.2% overhead

– Also exists for huge page levels: called rmap_pde before
● Used for many mmu works, e.g.,

– Write protecting a guest page

– Unmapping a guest page

Copyright(c) 2012 NTT Corp. All Rights Reserved.

How rmap can be visualized

● Just for two dimensional paging
● Assuming EPT or NPT

● Otherwise lists of sptes need to be drawed

rmap

mmu pages

gfn

spte

Pointer to spte is held

Mapping to the guest page

Copyright(c) 2012 NTT Corp. All Rights Reserved.

What's achieved

● Fast dirty page logging
● Originally called SRCU-less dirty logging

● Good for live migration and VGA emulation

● Efficient THP page invalidation
● Optimized mmu_notifier's unmapping

● Good example of rmap handling

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Fast dirty page logging

● Problem

● GET_DIRTY_LOG sometimes took a long time

● Cause

● Write protection by traversing mmu pages was slow

– Unnecessarily heavy for relatively small numbers of dirty pages

– Serious cache pollution
● dirty_bitmap update by SRCU sometimes got slow

– Due to the nature of SRCU

● Solution

● Write protection based on dirty_bitmap and rmap

– Scans dirty_bitmap to find pages to protect and then uses rmap to find sptes

– Updates dirty_bitmap by atomic bitops: word-by-word xchg

● Result

● Stable GET_DIRTY_LOG time proportional to the number of dirty pages

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Get dirty log change in detail

● Before:

For each mmu page sp

If sp has mappings to memslot

For each spte in sp

Write protect the mapping if needed
SRCU-update dirty_bitmap

● After:

For each long size word in dirty_bitmap

If word is not zero

Update that word using xchg

Write protect the dirty pages reached from xchged-word and rmap

Check sp->slot_bitmap

SRCU-less word-by-word update

rmap

active_mmu_pages

Start from kvm->arch.active_mmu_pages global list

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Efficient THP page invalidation

● Problem

● Swapping out guest memory backed by THP pages took a long time

● Cause

● Invalidating a THP page was slow

– Unmapping every 4K page in it by kvm_unmap_hva()

– 20~40us

● Solution

● Introduced kvm_unmap_hva_range()

● Result

● More than 5 times faster

– 3~4us

● Related info

● Eric Northup once reported 30 sec delay when unmapping 128GB of memory

– Should be mitigated to some extent by this work

Copyright(c) 2012 NTT Corp. All Rights Reserved.

What's changed by kvm_unmap_hva_range()

● Before:

For each page in [hva_start, hva_end)

For each memslot

Unmap page if in memslot
● After 1:

For each memslot that intersects with [hva_start, hva_end)

For each page in that intersection

Unmap page

Touches unrelated memslots 512 times

Loop over rmap

Skips unrelated memslots first

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Additional improvement for huge page mappings

● Before(After 1):

For each page in the intersection

For each level

Unmap using rmap_level[gfn_level(page)]
● After 2:

For each level

For each page_level in the intersection

Unmap using rmap_level[gfn_level(page_level)]

For huge level handle the same rmap 512 times

Loop over gfn_level range

Copyright(c) 2012 NTT Corp. All Rights Reserved.

rmap structure change

● During the work rmap structure was changed a bit

● rmap_pde was split out from lpage_info
– Integrated with rmap as rmap[level][gfn]

– Cleaned up the code a bit for easily accessing a range of rmaps

Copyright(c) 2012 NTT Corp. All Rights Reserved.

What we can do next

● Fine grained control of live migration
● Make initial write protection rmap based

– Can drop sp->slot_bitmap

– Fine-grained mmu locking

● Make GET_DIRTY_LOG treat a range of addresses

– Reduce mmu_lock contention naturally

– Avoid getting too many dirty logs at once
● QEMU cannot process so many pages at once
● Dirty log gets stale while processing many pages

● Make use of EPT's A/D bits for dirty logging
● Latest processors only

● No write protection

– Guest will be freed from page fault overhead

Good for increasing the number of memslots

Use rmap for syncing with dirty_bitmap: see kvm-ppc

Copyright(c) 2012 NTT Corp. All Rights Reserved.

More about fine-grained get dirty log
● Problem of the current live migration scheme

● Same pages become dirty again while processing many pages

– Heavy QEMU's dirty_bitmap handling

– Cannot proceed while processing that many pages

● What's necessary

● New GET_DIRTY_LOG API

● Make the current global dirty_bitmap handling treat a range of pages

– Need a way to guess the remaining dirty pages without global sync

● Integration with the latest QEMU's migration code

– Separate migration thread may make it easy to use the new API

– Multi-threaded processing may also be possible: locking issues will be there

Being improved a lot by Juan

While processing a range of pages

Get another range of dirty log

To process up-to-date dirty log info for each range

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Example: 4 ranges with single threading

0 1 2 3 0 1 2 3

tn,3 tn+1,3

tn+1tn

tn+1,2tn,2
tn+1,1tn,1

tn,0 tn+1,0

1 range only:

4 ranges:

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Thank you!

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15

