How to Use KVM's Reverse Mappings
to Improve Scalability

November 7", 2012

NTT Open Source Software Center
Takuya Yoshikawa

@ NTT Copyright(c) 2012 NTT Corp. All Rights Reserved.

Table of Contents

 Introduction of this talk
 Why rmap
 What's rmap
* What's achieved
« Fast dirty page logging
« Efficient THP page invalidation
* What we can do next

* Fine-grained dirty logging for live migration

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Introduction

 Why rmap
My work was mainly done around it last year

- Not intentional
 May be able to get more from it

- Improvement on my previous work
- More use cases

 What's rmap

» Tells us which sptes have mappings to a given guest page

- At least one ulong for each guest page: >= 0.2% overhead
- Also exists for huge page levels: called rmap_pde before
e Used for many mmu works, e.g.,
- Write protecting a guest page
- Unmapping a guest page

@ NTT Copyright(c) 2012 NTT Corp. All Rights Reserved.

How rmap can be visualized

» Just for two dimensional paging

e Assuming EPT or NPT
« Otherwise lists of sptes need to be drawed

Mapping to the guest page

mmu pages ‘;I > Spte

rmap
gfn

Pointer to spte is held

@ NTT Copyright(c) 2012 NTT Corp. All Rights Reserved.

What's achieved

« Fast dirty page logging

* Originally called SRCU-less dirty logging

« Good for live migration and VGA emulation
» Efficient THP page invalidation

e Optimized mmu_notifier's unmapping

* Good example of rmap handling

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Fast dirty page logging

 Problem
e GET_DIRTY_LOG sometimes took a long time
« Cause

« Write protection by traversing mmu pages was slow

- Unnecessarily heavy for relatively small numbers of dirty pages
- Serious cache pollution
« dirty bitmap update by SRCU sometimes got slow

- Due to the nature of SRCU
e Solution

« Write protection based on dirty bitmap and rmap

- Scans dirty_bitmap to find pages to protect and then uses rmap to find sptes
- Updates dirty _bitmap by atomic bitops: word-by-word xchg

e Result

« Stable GET_DIRTY_LOG time proportional to the number of dirty pages

@ NTT Copyright(c) 2012 NTT Corp. All Rights Reserved.

Get dirty log change in detall

 Before:

For each mmu page sp Start from kvm->arch.active_mmu_pages global list

If sp has mappings to memsilot Check sp->slot_bitmap

For each spte in sp

Write protect the mapping if needed
SRCU-update dirty bitmap

o After:

For each long size word in dirty _bitmap

If word is not zero
Update that word using xchg SRCU-less word-by-word update
Write protect the dirty pages reached from xchged-word and rmap

active_mmu_pages ‘;I —>;|

rmap

@ NTT Copyright(c) 2012 NTT Corp. All Rights Reserved.

Efficient THP page invalidation

Problem
e Swapping out guest memory backed by THP pages took a long time
Cause
* Invalidating a THP page was slow
- Unmapping every 4K page in it by kvm_unmap_hva()
- 20~40us
Solution
* Introduced kvm_unmap_hva range()
Result
* More than 5 times faster
- 3~4us
Related info
* Eric Northup once reported 30 sec delay when unmapping 128GB of memory

- Should be mitigated to some extent by this work

Copyright(c) 2012 NTT Corp. All Rights Reserved.

What's changed by kvm_unmap hva_ range()

Before:

For each page in [hva_start, hva_end)

For each memslot Touches unrelated memslots 512 times
Unmap page if in memslot

After 1. Skips unrelated memslots first
For each memslot that intersects with [hva_start, hva_end)

For each page in that intersection Loop over rmap
Unmap page

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Additional improvement for huge page mappings

Before(After 1):

For each page in the intersection

For each level For huge level handle the same rmap 512 times
Unmap using rmap_level[gfn_level(page)]

o After 2:

For each level

For each page_level in the intersection Loop over gfn_level range
Unmap using rmap_level[gfn_level(page_level)]

@ NTT Copyright(c) 2012 NTT Corp. All Rights Reserved.

rmap structure change

* During the work rmap structure was changed a bit

 rmap_pde was split out from Ipage_info

- Integrated with rmap as rmap[level][gfn]
- Cleaned up the code a bit for easily accessing a range of rmaps

@ NTT Copyright(c) 2012 NTT Corp. All Rights Reserved.

What we can do next

* Fine grained control of live migration

e Make initial write protection rmap based

- Candrop sp->slot_bitmap Good for increasing the number of memslots
- Fine-grained mmu locking

« Make GET_DIRTY_LOG treat a range of addresses

- Reduce mmu_lock contention naturally
- Avoid getting too many dirty logs at once

« QEMU cannot process so many pages at once
 Dirty log gets stale while processing many pages

 Make use of EPT's A/D bits for dirty logging

e Latest processors only

* No write protection Use rmap for syncing with dirty _bitmap. see kvm-ppc

- Guest will be freed from page fault overhead

@ NTT Copyright(c) 2012 NTT Corp. All Rights Reserved.

More about fine-grained get dirty log

 Problem of the current live migration scheme

« Same pages become dirty again while processing many pages
- Heavy QEMU's dirty bitmap handling Being improved a lot by Juan
- Cannot proceed while processing that many pages

* What's necessary To process up-to-date dirty log info for each range

« New GET_DIRTY_LOG API

« Make the current global dirty bitmap handling treat a range of pages
- Need a way to guess the remaining dirty pages without global sync

« Integration with the latest QEMU's migration code

- Separate migration thread may make it easy to use the new API
- Multi-threaded processing may also be possible: locking issues will be there

While processing a range of pages

. 1
I R S

Get another range of dirty log

@ NTT Copyright(c) 2012 NTT Corp. All Rights Reserved.

Example

1 range only:

. 4 ranges with single threading

tn »>(n+1

| | 1 |
4 ranges:

C O I C I CZ 3 ' e =

>
tn,O tn,l tn+1,0 - tn+1,1
th.2 > [n+1.2
th3 >(n+1,3

Copyright(c) 2012 NTT Corp. All Rights Reserved.

Thank you!

Copyright(c) 2012 NTT Corp. All Rights Reserved.

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15

