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Introduction

● Why rmap 
● My work was mainly done around it last year

– Not intentional
● May be able to get more from it

– Improvement on my previous work

– More use cases

● What's rmap
● Tells us which sptes have mappings to a given guest page

– At least one ulong for each guest page: >= 0.2% overhead

– Also exists for huge page levels: called rmap_pde before
● Used for many mmu works, e.g.,

– Write protecting a guest page

– Unmapping a guest page
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How rmap can be visualized

● Just for two dimensional paging
● Assuming EPT or NPT

● Otherwise lists of sptes need to be drawed

rmap

mmu pages

gfn

spte

Pointer to spte is held

Mapping to the guest page
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What's achieved

● Fast dirty page logging
● Originally called SRCU-less dirty logging

● Good for live migration and VGA emulation

● Efficient THP page invalidation
● Optimized mmu_notifier's unmapping

● Good example of rmap handling
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Fast dirty page logging

● Problem

● GET_DIRTY_LOG sometimes took a long time

● Cause

● Write protection by traversing mmu pages was slow

– Unnecessarily heavy for relatively small numbers of dirty pages 

– Serious cache pollution
● dirty_bitmap update by SRCU sometimes got slow

– Due to the nature of SRCU

● Solution

● Write protection based on dirty_bitmap and rmap

– Scans dirty_bitmap to find pages to protect and then uses rmap to find sptes

– Updates dirty_bitmap by atomic bitops: word-by-word xchg

● Result

● Stable GET_DIRTY_LOG time proportional to the number of dirty pages 
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Get dirty log change in detail

● Before:

For each mmu page sp

If sp has mappings to memslot 

For each spte in sp

Write protect the mapping if needed
SRCU-update dirty_bitmap

● After:

For each long size word in dirty_bitmap

If word is not zero

Update that word using xchg

Write protect the dirty pages reached from xchged-word and rmap

Check sp->slot_bitmap

SRCU-less word-by-word update

rmap

active_mmu_pages

Start from kvm->arch.active_mmu_pages global list
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Efficient THP page invalidation

● Problem

● Swapping out guest memory backed by THP pages took a long time

● Cause

● Invalidating a THP page was slow

– Unmapping every 4K page in it by kvm_unmap_hva()

– 20~40us

● Solution

● Introduced kvm_unmap_hva_range()

● Result

● More than 5 times faster

– 3~4us

● Related info

● Eric Northup once reported 30 sec delay when unmapping 128GB of memory

– Should be mitigated to some extent by this work
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What's changed by kvm_unmap_hva_range()

● Before:

For each page in [hva_start, hva_end)

For each memslot

Unmap page if in memslot
● After 1:

For each memslot that intersects with [hva_start, hva_end)

For each page in that intersection

Unmap page

Touches unrelated memslots 512 times

Loop over rmap

Skips unrelated memslots first
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Additional improvement for huge page mappings

● Before(After 1):

For each page in the intersection

For each level

Unmap using rmap_level[gfn_level(page)]
● After 2:

For each level

For each page_level in the intersection

Unmap using rmap_level[gfn_level(page_level)]

For huge level handle the same rmap 512 times

Loop over gfn_level range
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rmap structure change

● During the work rmap structure was changed a bit

● rmap_pde was split out from lpage_info
– Integrated with rmap as rmap[level][gfn]

– Cleaned up the code a bit for easily accessing a range of rmaps
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What we can do next

● Fine grained control of live migration
● Make initial write protection rmap based

– Can drop sp->slot_bitmap

– Fine-grained mmu locking

● Make GET_DIRTY_LOG treat a range of addresses

– Reduce mmu_lock contention naturally

– Avoid getting too many dirty logs at once
● QEMU cannot process so many pages at once
● Dirty log gets stale while processing many pages

● Make use of EPT's A/D bits for dirty logging
● Latest processors only

● No write protection

– Guest will be freed from page fault overhead

Good for increasing the number of memslots

Use rmap for syncing with dirty_bitmap: see kvm-ppc
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More about fine-grained get dirty log
● Problem of the current live migration scheme

● Same pages become dirty again while processing many pages

– Heavy QEMU's dirty_bitmap handling

– Cannot proceed while processing that many pages

● What's necessary

● New GET_DIRTY_LOG API

● Make the current global dirty_bitmap handling treat a range of pages

– Need a way to guess the remaining dirty pages without global sync

● Integration with the latest QEMU's migration code

– Separate migration thread may make it easy to use the new API

– Multi-threaded processing may also be possible: locking issues will be there

Being improved a lot by Juan

While processing a range of pages

Get another range of dirty log

To process up-to-date dirty log info for each range
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Example: 4 ranges with single threading

0 1 2 3 0 1 2 3

tn,3 tn+1,3

tn+1tn

tn+1,2tn,2
tn+1,1tn,1

tn,0 tn+1,0

1 range only:

4 ranges:
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Thank you!
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