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Migration

Wire Format /

savevm Format

$ gemu <cmdline> $ gemu <cmdline>

-incoming <...>

(gemu) migrate <...>
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The Problem

Very easy to break migration between different QEMU
versions

By the time breakage Is found, it can be too late to fix
e.g. released versions have bugs
Migration may erroneously succeed

When migration fails, it can't tell much about the
reason

Impact of such breakages can be huge
Currently, no way to prove migration compatibility
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Can We ldentify Problems Earlier?
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Ways to Check Migration Breakage

Dynamic
Static
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Ways to Check Migration Breakage: Dynamic
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Dynamic Checking

Needs a live state

Only acts on devices present in the VM at the time of
migration

Subsections present based on device state

L Amit Shah ‘ redhat
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savevm file sanity checks
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savevim format is...
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savevim Format is a Blackbox
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savevm format is ugly -suan quinei

Doesn't contain machine type information
Doesn't contain array or list sizes

Array sizes change based on configuration
“01”: binary data or a new section?

No size information -> prone to lose sync
savevm file by itself is indecipherable
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savevm Format Checks: Solutions?
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Can send vmstate info before the actual vmstate so
some analysis possible

Fixing entirely essentially means 'gemu —incoming
<...>"Is sufficient to accept migration

Need to fix QEMU and the world before we can bring
this to reality

Amit Shah q redhat
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Ways to Check Migration Breakage: Static
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Static Checking

Does not need a live state

All compiled-in devices can be checked

Bugs can be identified before committing patches
Exact cause of potential failure can be pinpointed

18 Amit Shah

Q rednat.



19

Migration Metadata Checks
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Migration Metadata
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static const VMStateDescription vmstate acpi = {

.name = "piix4 pm",

.version _id = 3,

.minimum version id = 3,

.minimum version id old = 1,

.load state old = acpi load old,

.post _load = vmstate acpi post load,

.fields = (VMStateField []) {
VMSTATE PCI DEVICE(parent obj, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.sts, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.en, PIIX4PMState),
VMSTATE UINTl6(ar.pml.cnt.cnt, PIIX4PMState),
VMSTATE STRUCT(apm, PIIX4PMState, 0, vmstate apm, APMState),
VMSTATE TIMER(ar.tmr.timer, PIIX4PMState),
VMSTATE INT64 (ar.tmr.overflow time, PIIX4PMState),
VMSTATE STRUCT(ar.gpe, PIIX4PMState, 2, vmstate gpe,ACPIGPE)
VMSTATE_STRUCT(pCiO_Status, PIIX4PMState, 2,

vmstate pci status, struct pci status),

VMSTATE END OF LIST()

Amit Shah
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Migration Metadata: Subsections

.subsections =(VMStateSubsection[]) {

{

.vmsd = &usbredir bulk receiving vmstate,
.needed = usbredir bulk receiving needed,

}o

Optional sections
Based on device state at time of migration
'needed’ check at source to determine eligibility

i Amit Shah ‘ redhat



Migration Metadata Checker

Look at migration metadata
Output metadata information for all devices
Diff that output from one QEMU binary with another

Tell whether migration from version x to y will break,
(and how).

22 Amit Shah ‘ redhat



Sample Output

piix4 pm
Name: apm
Version id: 0
Size: 224
Type: Struct
APM State
Name: apmc
Version id:
Size: 1
Type: Single
Name: apms
Version id:
Size: 1
Type: Single
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Bugs a Static Checker Can Flag
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Bugs a Static Checker Can Flag

static const VMStateDescription vmstate acpi = {
.name = "piix4 pm",
.version id = 3,
.minimum version id = 3,
.minimum version id old = 1,

.load_stgte_old = acpi load old,
.post load = vmstate acpi post load,
.fields = (VMStateField []) {
VMSTATE PCI_DEVICE(parent obj, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.sts, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.en, PIIX4PMState),
VMSTATE UINTlé6(ar.pml.cnt.cnt, PIIX4PMState),
VMSTATE STRUCT (apm, PIIX4PMState, 0, vmstate apm, APMState),
VMSTATE TIMER(ar.tmr.timer, PIIX4PMState),
VMSTATE INT64(ar.tmr.overflow time, PIIX4PMState),
VMSTATE STRUCT(ar.gpe, PIIX4PMState, 2, vmstate gpe, ACPIGPE),
VMSTATE STRUCT(pciO_status, PIIX4PMState, 2, vmstate pci status,
struct pci_status),
VMSTATE END_OF LIST()
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Bugs a Static Checker Can Flag

static const VMStateDescription vmstate acpi = {

}i
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.name = "piix4 pm",

.version id = 4,

.minimum version id = 3,

.minimum version id old = 1,

.load state old = acpi load old,
.post load = vmstate acpi post load,
.fields = (VMStateField []) {

VMSTATE PCI DEVICE(parent obj, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.sts, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.en, PIIX4PMState),
VMSTATE UINTlé6(ar.pml.cnt.cnt, PIIX4PMState),

VMSTATE STRUCT (apm, PIIX4PMState, 0, vmstate apm, APMState),

VMSTATE TIMER(ar.tmr.timer, PIIX4PMState),

VMSTATE INT64(ar.tmr.overflow time, PIIX4PMState),
VMSTATE STRUCT(ar.gpe, PIIX4PMState, 2, vmstate gpe, ACPIGPE),
VMSTATE STRUCT(pciO_status, PIIX4PMState, 2, vmstate pci status,

struct pci_status),
VMSTATE END OF LIST()

Amit Shah

If version changes without any other field changes, flag
It as a bug
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Bugs a Static Checker Can Flag

static const VMStateDescription vmstate acpi = {

.name = "piix4 pm",

.version id = 3,

.minimum version id = 3,

.minimum version id old = 1,

.load state old = acpi load old,

.post load = vmstate acpi post load,

.fields = (VMStateField []) {
VMSTATE PCI_DEVICE(parent obj, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.sts, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.en, PIIX4PMState),
VMSTATE UINTlé6(ar.pml.cnt.cnt, PIIX4PMState),
VMSTATE STRUCT (apm, PIIX4PMState, 0, vmstate apm, APMState),
VMSTATE TIMER(ar.tmr.timer, PIIX4PMState),
VMSTATE INT64(ar.tmr.overflow time, PIIX4PMState),
VMSTATE STRUCT(ar.gpe, PIIX4PMState, 2, vmstate gpe, ACPIGPE),
VMSTATE STRUCT(pciO_status, PIIX4PMState, 2, vmstate pci status,

struct pci_status),

VMSTATE_END OF LIST()
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Bugs a Static Checker Can Flag

static const VMStateDescription vmstate acpi = {

}i
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.name = "piix4 pm",

.version id = 3,

.minimum version id = 3,

.minimum version id old = 1,

.load state old = acpi load old,
.post load = vmstate acpi post load,
.fields = (VMStateField []) {

VMSTATE PCI DEVICE(parent obj, PIIX4PMState),
VMSTATE UINT32(ar.pml.evt.sts, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.en, PIIX4PMState),
VMSTATE UINTlé6(ar.pml.cnt.cnt, PIIX4PMState),

VMSTATE STRUCT (apm, PIIX4PMState, 0, vmstate apm, APMState),

VMSTATE TIMER(ar.tmr.timer, PIIX4PMState),

VMSTATE INT64(ar.tmr.overflow time, PIIX4PMState),
VMSTATE STRUCT(ar.gpe, PIIX4PMState, 2, vmstate gpe, ACPIGPE),
VMSTATE STRUCT(pciO_status, PIIX4PMState, 2, vmstate pci status,

struct pci_status),
VMSTATE END OF LIST()

Amit Shah

If some field changes without version change, flag it as
a bug
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Bugs a Static Checker Can Flag

Subsections

If one is introduced and version is bumped, flag it

Src Dest Action
Present Present Normal subsection processing

Present Absent Warning: this device might break; audit all ways this
device gets in this state

Absent Present Nothing to worry about
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Substructures
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Substructures

piix4 pm
Name: apm
Version id: 0
Size: 224
Type: Struct
APM State
Name: apmc
Version id:
Size: 1
Type: Single
Name: apms
Version id:
Size: 1
Type: Single
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Substructures

piix4 pm
Name: apm
Version id: 0
Size: 224
APNV ate
Name: apmc
Version id: 0
Size: 1
Type: Single
Name: apms
Version id: 0
Size: 1
Type: Single
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Substructures

piix4 pm
Name: apm
Version id: 0
Size: 224
Type: Struct
APM State
Name: apmc
Version id:
Size: 1

Type: Single
Name: apms
Version id:
Size: 1
Type: Single
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Substructures

pllX4_pm const VMStateDescription vmstate apm =
Name: apm {
. L, .name = "APM State",
Version 1d: 0 version id = 1,
Size: 224 .minimumZversion_id =1,
Type: Struct .minimum version id old = 1,
.fields = (VMStateField[]) {
APM State VMSTATE UINTS8(apmc, APMState),

VMSTATE UINTS8(apms, APMState),

Name: apmc
VMSTATE END OF LIST()

Version id: 0 )
Size: 1 }i

Type: Single
Name: apms

Version id: 0

Size: 1

Type: Single

34 Amit Shah ‘ redhat



Substructures: Problems
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Version field in a
substructure is ignored

Currently need to add
a hew subsection for
each new field

Prone to be broken
easily

const VMStateDescription vmstate apm =

{

.name = "APM State",
.version id = 1,

.minimum version id = 1,
.minimum version id old = 1,

.fields = (VMStateField[]) {
VMSTATE UINTS8(apmc, APMState),
VMSTATE UINT8(apms, APMState),
VMSTATE _END OF LIST()

}
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Next Steps
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To Do

Not everything is converted to vmstate yet
Fix substructures
We need something like

gemu -M pc-1.6 —dump-vmstate

(and / or)
QMP command to dump vmstate

Place vmstate metadata for released versions and
corresponding machine types somewhere in tests/, run
checks before committing / before releasing
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To Do

Longer term
Make vmstate definitions an IDL

Helps in keeping vmstate info in one place
Helps reviewing
Newer state fields added / removed are immediately identified
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