Experiments in Enabling

Automated Migration Testing

Amit Shah
Red Hat
22 Oct 2013

- redhat



Thanks

Juan
Markus
Orit

Amit Shah

Q rednat.



Migration

Amit Shah ‘ redhat



Migration

—-incoming <...>

Amit Shah ‘ redhat



Migration

—-incoming <...>

(gemu) migrate <...>

Amit Shah ‘ redhat



Migration

Wire Format /

savevm Format

$ gemu <cmdline> $ gemu <cmdline>

-incoming <...>

(gemu) migrate <...>

Amit Shah @ rednat



The Problem

Very easy to break migration between different QEMU
versions

By the time breakage Is found, it can be too late to fix
e.g. released versions have bugs
Migration may erroneously succeed

When migration fails, it can't tell much about the
reason

Impact of such breakages can be huge
Currently, no way to prove migration compatibility

Amit Shah ‘ redhat



Can We ldentify Problems Earlier?

Amit Shah q redhat



Ways to Check Migration Breakage

Dynamic
Static

Amit Shah ‘ redhat



10

Ways to Check Migration Breakage: Dynamic

Amit Shah q redhat



Dynamic Checking

Needs a live state

Only acts on devices present in the VM at the time of
migration

Subsections present based on device state

L Amit Shah ‘ redhat



12

savevm file sanity checks

Amit Shah

Q rednat.



13

savevim format is...

Amit Shah

Q rednat.



14

Amit Shah

Q rednat.



savevim Format is a Blackbox

15

savevm format is ugly -suan quinei

Doesn't contain machine type information
Doesn't contain array or list sizes

Array sizes change based on configuration
“01”: binary data or a new section?

No size information -> prone to lose sync
savevm file by itself is indecipherable

Amit Shah

Q rednat.



savevm Format Checks: Solutions?

16

Can send vmstate info before the actual vmstate so
some analysis possible

Fixing entirely essentially means 'gemu —incoming
<...>"Is sufficient to accept migration

Need to fix QEMU and the world before we can bring
this to reality

Amit Shah q redhat



L

Ways to Check Migration Breakage: Static

Amit Shah

Q rednat.



Static Checking

Does not need a live state

All compiled-in devices can be checked

Bugs can be identified before committing patches
Exact cause of potential failure can be pinpointed

18 Amit Shah

Q rednat.



19

Migration Metadata Checks

Amit Shah

Q rednat.



Migration Metadata

20

static const VMStateDescription vmstate acpi = {

.name = "piix4 pm",

.version _id = 3,

.minimum version id = 3,

.minimum version id old = 1,

.load state old = acpi load old,

.post _load = vmstate acpi post load,

.fields = (VMStateField []) {
VMSTATE PCI DEVICE(parent obj, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.sts, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.en, PIIX4PMState),
VMSTATE UINTl6(ar.pml.cnt.cnt, PIIX4PMState),
VMSTATE STRUCT(apm, PIIX4PMState, 0, vmstate apm, APMState),
VMSTATE TIMER(ar.tmr.timer, PIIX4PMState),
VMSTATE INT64 (ar.tmr.overflow time, PIIX4PMState),
VMSTATE STRUCT(ar.gpe, PIIX4PMState, 2, vmstate gpe,ACPIGPE)
VMSTATE_STRUCT(pCiO_Status, PIIX4PMState, 2,

vmstate pci status, struct pci status),

VMSTATE END OF LIST()

Amit Shah

4

Q rednat.



Migration Metadata: Subsections

.subsections =(VMStateSubsection[]) {

{

.vmsd = &usbredir bulk receiving vmstate,
.needed = usbredir bulk receiving needed,

}o

Optional sections
Based on device state at time of migration
'needed’ check at source to determine eligibility

i Amit Shah ‘ redhat



Migration Metadata Checker

Look at migration metadata
Output metadata information for all devices
Diff that output from one QEMU binary with another

Tell whether migration from version x to y will break,
(and how).

22 Amit Shah ‘ redhat



Sample Output

piix4 pm
Name: apm
Version id: 0
Size: 224
Type: Struct
APM State
Name: apmc
Version id:
Size: 1
Type: Single
Name: apms
Version id:
Size: 1
Type: Single

23

0

0

Amit Shah

Q rednat.



24

Bugs a Static Checker Can Flag

Amit Shah

Q rednat.



Bugs a Static Checker Can Flag

static const VMStateDescription vmstate acpi = {
.name = "piix4 pm",
.version id = 3,
.minimum version id = 3,
.minimum version id old = 1,

.load_stgte_old = acpi load old,
.post load = vmstate acpi post load,
.fields = (VMStateField []) {
VMSTATE PCI_DEVICE(parent obj, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.sts, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.en, PIIX4PMState),
VMSTATE UINTlé6(ar.pml.cnt.cnt, PIIX4PMState),
VMSTATE STRUCT (apm, PIIX4PMState, 0, vmstate apm, APMState),
VMSTATE TIMER(ar.tmr.timer, PIIX4PMState),
VMSTATE INT64(ar.tmr.overflow time, PIIX4PMState),
VMSTATE STRUCT(ar.gpe, PIIX4PMState, 2, vmstate gpe, ACPIGPE),
VMSTATE STRUCT(pciO_status, PIIX4PMState, 2, vmstate pci status,
struct pci_status),
VMSTATE END_OF LIST()

25 Amit Shah

Q rednat.



Bugs a Static Checker Can Flag

static const VMStateDescription vmstate acpi = {

}i

26

.name = "piix4 pm",

.version id = 4,

.minimum version id = 3,

.minimum version id old = 1,

.load state old = acpi load old,
.post load = vmstate acpi post load,
.fields = (VMStateField []) {

VMSTATE PCI DEVICE(parent obj, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.sts, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.en, PIIX4PMState),
VMSTATE UINTlé6(ar.pml.cnt.cnt, PIIX4PMState),

VMSTATE STRUCT (apm, PIIX4PMState, 0, vmstate apm, APMState),

VMSTATE TIMER(ar.tmr.timer, PIIX4PMState),

VMSTATE INT64(ar.tmr.overflow time, PIIX4PMState),
VMSTATE STRUCT(ar.gpe, PIIX4PMState, 2, vmstate gpe, ACPIGPE),
VMSTATE STRUCT(pciO_status, PIIX4PMState, 2, vmstate pci status,

struct pci_status),
VMSTATE END OF LIST()

Amit Shah

If version changes without any other field changes, flag
It as a bug

Q rednat.



Bugs a Static Checker Can Flag

static const VMStateDescription vmstate acpi = {

.name = "piix4 pm",

.version id = 3,

.minimum version id = 3,

.minimum version id old = 1,

.load state old = acpi load old,

.post load = vmstate acpi post load,

.fields = (VMStateField []) {
VMSTATE PCI_DEVICE(parent obj, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.sts, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.en, PIIX4PMState),
VMSTATE UINTlé6(ar.pml.cnt.cnt, PIIX4PMState),
VMSTATE STRUCT (apm, PIIX4PMState, 0, vmstate apm, APMState),
VMSTATE TIMER(ar.tmr.timer, PIIX4PMState),
VMSTATE INT64(ar.tmr.overflow time, PIIX4PMState),
VMSTATE STRUCT(ar.gpe, PIIX4PMState, 2, vmstate gpe, ACPIGPE),
VMSTATE STRUCT(pciO_status, PIIX4PMState, 2, vmstate pci status,

struct pci_status),

VMSTATE_END OF LIST()

27 Amit Shah

Q rednat.



Bugs a Static Checker Can Flag

static const VMStateDescription vmstate acpi = {

}i

28

.name = "piix4 pm",

.version id = 3,

.minimum version id = 3,

.minimum version id old = 1,

.load state old = acpi load old,
.post load = vmstate acpi post load,
.fields = (VMStateField []) {

VMSTATE PCI DEVICE(parent obj, PIIX4PMState),
VMSTATE UINT32(ar.pml.evt.sts, PIIX4PMState),
VMSTATE UINTl6(ar.pml.evt.en, PIIX4PMState),
VMSTATE UINTlé6(ar.pml.cnt.cnt, PIIX4PMState),

VMSTATE STRUCT (apm, PIIX4PMState, 0, vmstate apm, APMState),

VMSTATE TIMER(ar.tmr.timer, PIIX4PMState),

VMSTATE INT64(ar.tmr.overflow time, PIIX4PMState),
VMSTATE STRUCT(ar.gpe, PIIX4PMState, 2, vmstate gpe, ACPIGPE),
VMSTATE STRUCT(pciO_status, PIIX4PMState, 2, vmstate pci status,

struct pci_status),
VMSTATE END OF LIST()

Amit Shah

If some field changes without version change, flag it as
a bug

Q rednat.



Bugs a Static Checker Can Flag

Subsections

If one is introduced and version is bumped, flag it

Src Dest Action
Present Present Normal subsection processing

Present Absent Warning: this device might break; audit all ways this
device gets in this state

Absent Present Nothing to worry about

29 Amit Shah

Q rednat.



30

Substructures

Amit Shah

Q rednat.



Substructures

piix4 pm
Name: apm
Version id: 0
Size: 224
Type: Struct
APM State
Name: apmc
Version id:
Size: 1
Type: Single
Name: apms
Version id:
Size: 1
Type: Single

31

0

0

Amit Shah

Q rednat.



Substructures

piix4 pm
Name: apm
Version id: 0
Size: 224
APNV ate
Name: apmc
Version id: 0
Size: 1
Type: Single
Name: apms
Version id: 0
Size: 1
Type: Single

32

Amit Shah

Q rednat.



Substructures

piix4 pm
Name: apm
Version id: 0
Size: 224
Type: Struct
APM State
Name: apmc
Version id:
Size: 1

Type: Single
Name: apms
Version id:
Size: 1
Type: Single

33

0

0

Amit Shah

Q rednat.



Substructures

pllX4_pm const VMStateDescription vmstate apm =
Name: apm {
. L, .name = "APM State",
Version 1d: 0 version id = 1,
Size: 224 .minimumZversion_id =1,
Type: Struct .minimum version id old = 1,
.fields = (VMStateField[]) {
APM State VMSTATE UINTS8(apmc, APMState),

VMSTATE UINTS8(apms, APMState),

Name: apmc
VMSTATE END OF LIST()

Version id: 0 )
Size: 1 }i

Type: Single
Name: apms

Version id: 0

Size: 1

Type: Single

34 Amit Shah ‘ redhat



Substructures: Problems

35

Version field in a
substructure is ignored

Currently need to add
a hew subsection for
each new field

Prone to be broken
easily

const VMStateDescription vmstate apm =

{

.name = "APM State",
.version id = 1,

.minimum version id = 1,
.minimum version id old = 1,

.fields = (VMStateField[]) {
VMSTATE UINTS8(apmc, APMState),
VMSTATE UINT8(apms, APMState),
VMSTATE _END OF LIST()

}

Amit Shah q redhat



36

Next Steps

Amit Shah

Q rednat.



To Do

Not everything is converted to vmstate yet
Fix substructures
We need something like

gemu -M pc-1.6 —dump-vmstate

(and / or)
QMP command to dump vmstate

Place vmstate metadata for released versions and
corresponding machine types somewhere in tests/, run
checks before committing / before releasing

37 Amit Shah ‘ redhat



To Do

Longer term
Make vmstate definitions an IDL

Helps in keeping vmstate info in one place
Helps reviewing
Newer state fields added / removed are immediately identified

38 Amit Shah q redhat



Thank You

- redhat



