

VGA Assignment Using VFIO

Alex Williamson
alex.williamson@redhat.com
October 21st, 2013

mailto:alex.williamson@redhat.com

Alex Williamson2

Agenda

● Introduction to
● PCI & PCIe
● IOMMUs
● VFIO

● VGA

● VFIO VGA support

● Quirks, quirks, quirks

● Status and future

● Performance

Alex Williamson3

A brief look at PCI

● Peripheral Component Interconnect

● Initially developed by Intel, 1992

● Replaced VLB, MCA, EISA, and ISA

● Hierarchical, self describing, bus-based architecture

● Buses provide 32 device slots, 8 functions per device

● Each function has 256 bytes of configuration space

● Allows device discovery
● Describes device and features
● Programmable base address registers (BARs)

● Single interrupt line (INTx) evolved to MSI/MSI-X

Alex Williamson4

PCI-Express improvements

● Software compatible with conventional PCI

● No longer a shared bus

● Point-to-point interface
● Requester IDs for transaction routing

● Similar to a network
● Additional configuration space (4k)

Alex Williamson5

IOMMUs

● Initially used to provide DMA translation only

● Allowed 32bit devices to avoid bounce buffers
● Popularized on x86 with AMD GART

● Fine granularity isolation support added with PCIe

● Enabled by Requester IDs
● AMD-Vi & Intel VT-d
● Devices are confined and operate within their own

address space

Alex Williamson6

A platform for VM device assignment

● Discoverable

● Self describing

● Self contained

● Fully programmable

● Isolated

● DMA translation

● Minimal configuration space emulation required

Alex Williamson7

Introduction to VFIO

● Virtual Function I/O

● Linux userspace driver infrastructure

● Enforces IOMMU protection

● Provides:
● Device access
● IOMMU programming interface
● High performance interrupt support

Alex Williamson8

VFIO for device assignment

● Guests are userspace drivers

● VFIO decomposes the device to userspace

● QEMU recomposes the device to PCI for guest

● KVM provides acceleration

Alex Williamson9

VFIO & PCI

● VFIO abstracts devices as Regions and IRQs

● Regions include:
● PCI configuration space
● MMIO and I/O port BAR spaces
● MMIO PCI ROM access

● IRQs include:
● INTx (legacy interrupts)
● Message Signaled Interrupts (MSI & MSI-X)

Alex Williamson10

VFIO Device Decomposition

MMIO3

MMIO1

MMIO2 MMIO3

MMIO1
MMIO2

I/O port 4

I/O port 4

Memory
space

I/O port
space

PCI config
space

VFIO
Device File Descriptor

Physical
Device

VFIO

Alex Williamson11

QEMU & VFIO

● QEMU creates guest mappings to each region
● PCI config region mapped to guest Bus/Slot/Func

● Some emulation in QEMU, some in VFIO

● BARs & ROM mapped to emulated BAR address
● in/out or read/write to BAR mapping results in
read/write to VFIO device file descriptor

● mmap support for sufficiently sized MMIO BARs

● VFIO signals interrupts via eventfd
● QEMU receives interrupts via poll(2)
● KVM irqfd support allows userspace bypass

Alex Williamson12

QEMU Device Re-composition

MMIO3

MMIO1
MMIO2

I/O port 4

VFIO
Device File Descriptor

MMIO3

MMIO1

MMIO2

I/O port 4

Guest
Memory

space

Guest
I/O port
space

Guest
PCI config

space

Virtual
Device

QEMU

Alex Williamson13

Great, can I assign my graphics card yet?

● Video Graphics Array

● Introduced on IBM PS/2 around 1987

● Age of fixed address I/O devices and 20-bit addresses

● Relies on fixed, system-wide addresses
● MMIO: 0xa_0000–0xb_ffff
● I/O port: 0x3b0–0x3bb, 0x3c0-0x3df

● VBIOS provides:
● Device initialization
● Runtime services: int10 & VESA

Alex Williamson14

Fixed VGA resources vs PCI

● VGA resources are not exposed through PCI BARs
● Assumed based on PCI class code

● Routing of VGA addresses controlled by:
● I/O port & MMIO enabled bits on devices
● VGA Enable bit on PCI bridges
● Chipset specific registers

● VGA routed to a single “bus”
● Single device per bus on PCIe

● Shared resources require arbitration

Alex Williamson15

VGA Arbiter

● Kernel software construct

● Allows locking of VGA resources
● Acquire lock before access
● Release lock after access
● VGA routing included with lock

● Cooperative usage model

Alex Williamson16

VFIO & VGA

● Provide a new VFIO “region” for accessing VGA

● Wrap guest VGA access in VGA arbiter callbacks
● Slow, but functional
● Assume guest won't use VGA long term

● Problem solved! Right?

Alex Williamson17

VFIO VGA

MMIO3

MMIO1

MMIO2

I/O port 4

Memory
space

I/O port
space

PCI config
space

VFIO
Device File Descriptor

Physical
Device

VFIO

VGA

V
G

A
 A

rb
it

er

VGA

VGA

VGA

Alex Williamson18

If only...

● VBIOS uses “back doors” to access PCI regions
● Physical BAR addresses hidden in VGA space
● PCI config space access through MMIO BARs
● I/O port BARs provide windows to MMIO BARs

● Try to access Host addresses
● Device is still isolated
● But it doesn't work

Alex Williamson19

VGA bootstrap example

● AMD/ATI Radeon has a PCI I/O port region at BAR4

● The VBIOS discovers the 2nd byte of the address of
BAR4 through the byte at VGA I/O port 0x3c3

● I/O port BAR4 provides an address and data window
register access to PCI MMIO BAR2

● At offset 0x4000 into BAR2, PCI configuration space
for the device is available

Alex Williamson20

Another example

● Nvidia cards have an I/O port region at BAR5

● Provides a data and address window to all the other
MMIO BARs

● BAR0 provides access to 256 bytes of conventional
PCI config space at offset 0x1800 and the full 4k of
PCIe config space at offset 0x88000

● Envytools documentation suggests other offsets
provide access to PCI configuration space of the
companion audio device and parent PCI bridge

Alex Williamson21

How do we handle this?

● Possible solution: Identity map graphics cards
● Imposes difficult restrictions on guest memory map

● Possible solution: Quirks
● QEMU Memory API allows for fine granularity handling

of sub-ranges for devices
● Quirks are device specific MemoryRegions for handling

these back doors
● Hopefully not performance paths
● Hopefully static

Quirk

Alex Williamson22

Identifying quirks

● It's hard... but not as hard as it seems

● QEMU VFIO has very good logging

● Unassigned memory access logging is useful

● Be careful of BARs that randomly get 1:1 mapped
● It will work for you and not others
● Configuration dependent

Alex Williamson23

Status

● Making progress

● Examples of working Radeon and Geforce cards

● Ongoing improvements:
● Linux v3.12

● Includes PCI bus & slot reset interface

● QEMU 1.7
● VFIO co-assigned device reset
● Better ROM handling
● Coherency/NoSnoop fixes (Windows Code 43 fix)

Alex Williamson24

VGA vs GPU

● VGA is not the only way to assign a graphics card

● Configure guest with emulated VGA + secondary
assigned GPU

● Just another assigned PCI device
● Proprietary drivers often required to initialize device

● May or may not need quirks

● No VGA arbiter dependencies, no VGA routing issues

● Actually some vendor support for this
● Nvidia: Quadro, GRID, and Tesla

Alex Williamson25

Future

● Close to having discrete AMD/Nvidia support

● Some remaining driver issues
● Not all host drivers unload cleanly
● Nvidia driver hogs VGA arbiter lock
● i915 VGA arbiter support is broken
● Uncertain future for VGA arbiter
● Basic VGA console drivers don't use VGA arbiter

● IGD Assignment
● Work in progress by Andy Barnes
● Not self contained like discrete graphics

Alex Williamson26

Performance

● 95%+ for accelerated drivers

● Poor VGA performance
● Abysmal if contended
● Bootstrap only

● Tune for virtualization
● INTx vs MSI

● NVreg_EnableMSI=1
● Geforce vs Quadro

● Configuration space polling
● NVreg_CheckPCIConfigSpace=0

Alex Williamson27

Alex Williamson28

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

