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A brief look at PCI

● Peripheral Component Interconnect

● Initially developed by Intel, 1992

● Replaced VLB, MCA, EISA, and ISA

● Hierarchical, self describing, bus-based architecture

● Buses provide 32 device slots, 8 functions per device

● Each function has 256 bytes of configuration space

● Allows device discovery
● Describes device and features
● Programmable base address registers (BARs)

● Single interrupt line (INTx) evolved to MSI/MSI-X 
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PCI-Express improvements

● Software compatible with conventional PCI

● No longer a shared bus

● Point-to-point interface
● Requester IDs for transaction routing

● Similar to a network
● Additional configuration space (4k)
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IOMMUs

● Initially used to provide DMA translation only

● Allowed 32bit devices to avoid bounce buffers
● Popularized on x86 with AMD GART

● Fine granularity isolation support added with PCIe

● Enabled by Requester IDs
● AMD-Vi & Intel VT-d
● Devices are confined and operate within their own 

address space
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A platform for VM device assignment

● Discoverable

● Self describing

● Self contained

● Fully programmable

● Isolated

● DMA translation

● Minimal configuration space emulation required
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Introduction to VFIO

● Virtual Function I/O

● Linux userspace driver infrastructure

● Enforces IOMMU protection

● Provides:
● Device access
● IOMMU programming interface
● High performance interrupt support
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VFIO for device assignment

● Guests are userspace drivers

● VFIO decomposes the device to userspace

● QEMU recomposes the device to PCI for guest

● KVM provides acceleration 
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VFIO & PCI

● VFIO abstracts devices as Regions and IRQs

● Regions include:
● PCI configuration space
● MMIO and I/O port BAR spaces
● MMIO PCI ROM access

● IRQs include:
● INTx (legacy interrupts)
● Message Signaled Interrupts (MSI & MSI-X)
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VFIO Device Decomposition
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QEMU & VFIO

● QEMU creates guest mappings to each region
● PCI config region mapped to guest Bus/Slot/Func

● Some emulation in QEMU, some in VFIO

● BARs & ROM mapped to emulated BAR address
● in/out or read/write to BAR mapping results in 
read/write to VFIO device file descriptor

● mmap support for sufficiently sized MMIO BARs

● VFIO signals interrupts via eventfd
● QEMU receives interrupts via poll(2)
● KVM irqfd support allows userspace bypass
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QEMU Device Re-composition
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Great, can I assign my graphics card yet?

● Video Graphics Array

● Introduced on IBM PS/2 around 1987

● Age of fixed address I/O devices and 20-bit addresses

● Relies on fixed, system-wide addresses
● MMIO: 0xa_0000–0xb_ffff
● I/O port: 0x3b0–0x3bb, 0x3c0-0x3df

● VBIOS provides:
● Device initialization
● Runtime services: int10 & VESA



Alex Williamson14

Fixed VGA resources vs PCI

● VGA resources are not exposed through PCI BARs
● Assumed based on PCI class code

● Routing of VGA addresses controlled by:
● I/O port & MMIO enabled bits on devices
● VGA Enable bit on PCI bridges
● Chipset specific registers

● VGA routed to a single “bus”
● Single device per bus on PCIe

● Shared resources require arbitration
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VGA Arbiter

● Kernel software construct

● Allows locking of VGA resources
● Acquire lock before access
● Release lock after access
● VGA routing included with lock

● Cooperative usage model
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VFIO & VGA

● Provide a new VFIO “region” for accessing VGA

● Wrap guest VGA access in VGA arbiter callbacks
● Slow, but functional
● Assume guest won't use VGA long term

● Problem solved!  Right?
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VFIO VGA
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If only...

● VBIOS uses “back doors” to access PCI regions
● Physical BAR addresses hidden in VGA space
● PCI config space access through MMIO BARs
● I/O port BARs provide windows to MMIO BARs

● Try to access Host addresses
● Device is still isolated
● But it doesn't work
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VGA bootstrap example

● AMD/ATI Radeon has a PCI I/O port region at BAR4

● The VBIOS discovers the 2nd byte of the address of 
BAR4 through the byte at VGA I/O port 0x3c3

● I/O port BAR4 provides an address and data window 
register access to PCI MMIO BAR2

● At offset 0x4000 into BAR2, PCI configuration space 
for the device is available
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Another example

● Nvidia cards have an I/O port region at BAR5

● Provides a data and address window to all the other 
MMIO BARs

● BAR0 provides access to 256 bytes of conventional 
PCI config space at offset 0x1800 and the full 4k of 
PCIe config space at offset 0x88000

● Envytools documentation suggests other offsets 
provide access to PCI configuration space of the 
companion audio device and parent PCI bridge
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How do we handle this?

● Possible solution: Identity map graphics cards
● Imposes difficult restrictions on guest memory map

● Possible solution: Quirks
● QEMU Memory API allows for fine granularity handling 

of sub-ranges for devices
● Quirks are device specific MemoryRegions for handling 

these back doors
● Hopefully not performance paths
● Hopefully static

Quirk
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Identifying quirks

● It's hard... but not as hard as it seems

● QEMU VFIO has very good logging

● Unassigned memory access logging is useful

● Be careful of BARs that randomly get 1:1 mapped
● It will work for you and not others
● Configuration dependent
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Status

● Making progress

● Examples of working Radeon and Geforce cards

● Ongoing improvements:
● Linux v3.12

● Includes PCI bus & slot reset interface

● QEMU 1.7
● VFIO co-assigned device reset
● Better ROM handling
● Coherency/NoSnoop fixes (Windows Code 43 fix)
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VGA vs GPU

● VGA is not the only way to assign a graphics card

● Configure guest with emulated VGA + secondary 
assigned GPU

● Just another assigned PCI device
● Proprietary drivers often required to initialize device

● May or may not need quirks

● No VGA arbiter dependencies, no VGA routing issues

● Actually some vendor support for this
● Nvidia: Quadro, GRID, and Tesla
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Future

● Close to having discrete AMD/Nvidia support

● Some remaining driver issues
● Not all host drivers unload cleanly
● Nvidia driver hogs VGA arbiter lock
● i915 VGA arbiter support is broken
● Uncertain future for VGA arbiter
● Basic VGA console drivers don't use VGA arbiter

● IGD Assignment
● Work in progress by Andy Barnes
● Not self contained like discrete graphics
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Performance

● 95%+ for accelerated drivers 

● Poor VGA performance
● Abysmal if contended
● Bootstrap only

● Tune for virtualization
● INTx vs MSI

● NVreg_EnableMSI=1
● Geforce vs Quadro

● Configuration space polling
● NVreg_CheckPCIConfigSpace=0



Alex Williamson27



Alex Williamson28

Thanks
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