
Deterministic Replay and Reverse
Debugging for QEMU

P. Dovgalyuk

Novgorod State University

Institute for System Programming
of the Russian Academy of Sciences

Our projects

• Working on QEMU projects since 2010 (version 0.13)

• Software analysis for x86

• Deterministic replay

• Reverse debugging

• Several upgrades (0.13→0.15→1.0→1.5→2.1)

• Deterministic replay was presented at CSMR 2012

2

How it works

3

QEMU QEMU
Log
file

Virtual
machine

Analysis
results

Log recording phase Log replaying phase

Contains OS
and program
for analysis

Non-
deterministic

events in VM are
saved into the

external file

Results of
debugging, trace
capturing, taint

analysis, and so on

Offline
analysis

tool

Deterministic replay applications

• No intrusion and overhead
– Profiling
– Taint analysis
– Offline dynamic analysis
– Analysis of the real-time applications

• Deterministic
– Replay and reverse debugging
– Debugging in complex environment
– Finding Heisenbugs
– Debugging of new virtual platforms and virtual

devices for QEMU

4

Deterministic replay and reverse
debugging

• Supports x86, x64, ARM
– User interface is the same for all platforms

• Works on Windows and Linux hosts
• Whole system debugging

– Allows debugging system-level code

• Non-intrusive analysis
– Debugger does not affect on target program

• Offline log analysis
– Suitable for analysis of network and other real-time

applications due to the low recording overhead

• Log file is independent of a host-machine
– Bug reproducing scenario may be recorded on one machine

and replayed on another

5

Replaying the simulator

6

CPU

RAM

Block
devices

Virtual
devices

Virtual
timers

Virtual
input

Deterministic part

TAP

Socket

libusb

Replay log

Winaudio

Video
output

Replay

Record

Clocks

Slirp

Mouse

Keyboard

Real
world

Deterministic replay
implementation

• High-level non-deterministic events are written
into the log in record mode
– mouse, keyboard, hardware clock, network packets,

USB packets

• Non-deterministic events read from the log in
replay mode are used instead of real inputs

• Disk I/O is deterministic, because of using
unchanged disk image

• Thread pool tasks execution sequence is
serialized to make it deterministic

7

QEMU changes

• Added log recording subsystem

• Target-specific dynamic translators were
changed to add instructions counting

• Target-independent components were
changed to record incoming events

8

Instructions counting:
icount issues

• Different counting for REP instructions in single step
and normal modes

– icount is not incremented for the last (ecx=0) iteration in
normal mode

• Incorrect when using breakpoints through gdb
– icount is incremented for non-executed instruction, which

located at the breakpoint address

• Seem to be x86-specific

9

Instructions counting

10

check tcg_exit_req

000f2e0e: push %ebx

++icount

000f2e0f: sub $0x2c,%esp

++icount

000f2e12: movl $0xf64bc,0x4(%esp)

++icount

000f2e1a: movl $0xf4d50,(%esp)

++icount

000f2e21: call 0xf1ca0

++icount

I’m going to create my
own icount with black

jack and hookers.

Hardware clock and timers

• Saving time into the events log

11

QEMU core Clock interface

Request time

Events logHardware clock

Write time into the log

Hardware clock and timers

• Reading time from the events log

12

QEMU core Clock interface

Request time

Events log

Read time from the log

Checkpointing

• Making periodic snapshots for convenient replay
debugging

• Allow navigation in the execution scenario

• Required for reverse execution

13

Normal replay

“Rewind” to saved snapshot

User input and passthru devices

• Keyboard

• Mouse

• Audio card

• Network adapters

• Serial interface

• USB devices

14

Reverse debugging

• Using checkpoints for faster rewind to the
desired moment of execution

• GDB reverse debugging commands

– reverse-continue

– reverse-step

– reverse-stepi

– reverse-next

– reverse-nexti

– reverse-finish

15

Reverse debugging

16

int *p = malloc(sizeof(int));

………….

p = NULL;

………….

int a = *p;

Reverse debugging

17

int *p = malloc(sizeof(int));

………….

p = NULL;

………….

int a = *p;

gdb> watch p
gdb> reverse-continue

Reverse debugging

18

int *p = malloc(sizeof(int));

………….

p = NULL;

………….

int a = *p;

gdb> watch p
gdb> reverse-continue

1 2 3 4

Evaluation

• Environment

– Core i7 with 8G of RAM

– Windows 7 x64

• Virtual machine

– i386 with 128M of RAM

• Three testing scenarios

– Windows XP loading

– Download of 8M file

– Compressing 8M file with gzip

19

Evaluation
Windows XP File download Gzip

Instructions
count

5 billions 1.4 billions 3 billions

Normal execution
time

69 sec 41 sec 12 sec

Log size 15 M 2.1 M* 1.1 M

Log size per 1000
instructions

3 bytes 1.6 bytes 0.4 bytes

Recording
overhead

1.5x 1.1x 3.2x

Replaying
overhead

4.5x 2.9x 12.8x

20
* Without network traffic

Results and status

• Found several bugs in QEMU core

• Prepared reverse execution patches

– about 6000 LOC

– split into two parts – replay core and reverse
debugging

21

Results: applied patches
Date Hash Description

2014-09-26 5a6e8ba kvmvapic: fix migration when VM paused and when not running Windows

2014-09-18 5bde140 target-i386: update fp status fix

2014-09-11 462efe9 gdbstub: init mon_chr through qemu_chr_alloc

2014-09-11 a28fe7e pckbd: adding new fields to vmstate

2014-09-11 0b10215 mc146818rtc: add missed field to vmstate

2014-09-11 2c9ecde piix: do not set irq while loading vmstate

2014-09-11 7385b27 serial: fixing vmstate for save/restore

2014-09-11 461a275 parallel: adding vmstate for save/restore

2014-09-11 c0b92f3 fdc: adding vmstate for save/restore

2014-09-11 4603ea0 cpu: init vmstate for ticks and clock offset

2014-09-11 a6dead4 apic_common: vapic_paddr synchronization fix

2014-09-05 6c3bff0 exec: Save CPUState::exception_index field

2013-04-20 089305a i386 ROR r8/r16 instruction fix

2012-06-15 b75a028 Prevent disk data loss when closing qemu

2011-02-25 c7eb1f0 Fixing network over sockets implementation for win32

22

How can you use it? (1/3)

• Deterministic debugging of devices’
implementation in QEMU

– ROR r8/r16

23

How can you use it? (2/3)

• Reverse debugging through GDB
interface

– user-mode programs

– drivers

– kernel

24

How can you use it? (3/3)

• Capturing
execution data for
offline analysis

– instructions
sequence

– memory accesses

– network traffic

25

Future work

• Up-streaming the rest of the bug-fixes
• Up-streaming the reverse execution core patches
• Up-streaming reverse debugging patches
• Improving performance

– Improve instructions counting to increase replaying
speed

– Reduce log saving overhead to improve usability
– Save additional data for faster transition between

states while replaying and debugging

• Creating framework for testing of the
deterministic replay

26

