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Our projects 

• Working on QEMU projects since 2010 (version 0.13) 

• Software analysis for x86 

• Deterministic replay 

• Reverse debugging 

• Several upgrades (0.13→0.15→1.0→1.5→2.1) 

• Deterministic replay was presented at CSMR 2012 
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How it works 
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Deterministic replay applications 

• No intrusion and overhead 
– Profiling 
– Taint analysis 
– Offline dynamic analysis 
– Analysis of the real-time applications 

• Deterministic 
– Replay and reverse debugging 
– Debugging in complex environment 
– Finding Heisenbugs 
– Debugging of new virtual platforms and virtual 

devices for QEMU 
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Deterministic replay and reverse 
debugging 

• Supports x86, x64, ARM 
– User interface is the same for all platforms 

• Works on Windows and Linux hosts 
• Whole system debugging 

– Allows debugging system-level code 

• Non-intrusive analysis 
– Debugger does not affect on target program 

• Offline log analysis 
– Suitable for analysis of network and other real-time 

applications due to the low recording overhead 

• Log file is independent of a host-machine 
– Bug reproducing scenario may be recorded on one machine 

and replayed on another 
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Replaying the simulator 
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Deterministic replay 
implementation 

• High-level non-deterministic events are written 
into the log in record mode 
– mouse, keyboard, hardware clock, network packets, 

USB packets 

• Non-deterministic events read from the log in 
replay mode are used instead of real inputs 

• Disk I/O is deterministic, because of using 
unchanged disk image 

• Thread pool tasks execution sequence is 
serialized to make it deterministic 
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QEMU changes 

• Added log recording subsystem 

• Target-specific dynamic translators were 
changed to add instructions counting 

• Target-independent components were 
changed to record incoming events 
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Instructions counting: 
icount issues 

• Different counting for REP instructions in single step 
and normal modes 

– icount is not incremented for the last (ecx=0) iteration in 
normal mode 

• Incorrect when using breakpoints through gdb 
– icount is incremented for non-executed instruction, which 

located at the breakpoint address 

• Seem to be x86-specific 
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Instructions counting 
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check tcg_exit_req 

000f2e0e: push  %ebx 

++icount 

000f2e0f: sub   $0x2c,%esp 

++icount 

000f2e12: movl $0xf64bc,0x4(%esp) 

++icount 

000f2e1a: movl  $0xf4d50,(%esp) 

++icount 

000f2e21: call  0xf1ca0 

++icount 
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Hardware clock and timers 

• Saving time into the events log 
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Hardware clock and timers 

• Reading time from the events log 
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Checkpointing 

• Making periodic snapshots for convenient replay 
debugging 

• Allow navigation in the execution scenario 

• Required for reverse execution 
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User input and passthru devices 

• Keyboard 

• Mouse 

• Audio card 

• Network adapters 

• Serial interface 

• USB devices 
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Reverse debugging 

• Using checkpoints for faster rewind to the 
desired moment of execution 

• GDB reverse debugging commands 

– reverse-continue 

– reverse-step 

– reverse-stepi 

– reverse-next 

– reverse-nexti 

– reverse-finish 
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Reverse debugging 
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int *p = malloc(sizeof(int)); 
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p = NULL; 
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int a = *p; 



Reverse debugging 
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int *p = malloc(sizeof(int)); 
 
…………. 
 
p = NULL; 
 
…………. 
 
int a = *p; 

gdb> watch p 
gdb> reverse-continue 



Reverse debugging 
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int *p = malloc(sizeof(int)); 
 
…………. 
 
p = NULL; 
 
…………. 
 
int a = *p; 

gdb> watch p 
gdb> reverse-continue 
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Evaluation 

• Environment 

– Core i7 with 8G of RAM 

– Windows 7 x64 

• Virtual machine 

– i386 with 128M of RAM 

• Three testing scenarios 

– Windows XP loading 

– Download of 8M file 

– Compressing 8M file with gzip 
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Evaluation 
Windows XP File download Gzip 

Instructions 
count 

5 billions 1.4 billions 3 billions 

Normal execution 
time 

69 sec 41 sec 12 sec 

Log size 15 M 2.1 M* 1.1 M 

Log size per 1000 
instructions 

3 bytes 1.6 bytes 0.4 bytes 

Recording 
overhead 

1.5x 1.1x 3.2x 

Replaying 
overhead 

4.5x 2.9x 12.8x 
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Results and status 

• Found several bugs in QEMU core 

• Prepared reverse execution patches 

– about 6000 LOC 

– split into two parts – replay core and reverse 
debugging 
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Results: applied patches 
Date Hash Description 

2014-09-26 5a6e8ba kvmvapic: fix migration when VM paused and when not running Windows 

2014-09-18 5bde140 target-i386: update fp status fix 

2014-09-11 462efe9 gdbstub: init mon_chr through qemu_chr_alloc 

2014-09-11 a28fe7e pckbd: adding new fields to vmstate 

2014-09-11 0b10215 mc146818rtc: add missed field to vmstate 

2014-09-11 2c9ecde piix: do not set irq while loading vmstate 

2014-09-11 7385b27 serial: fixing vmstate for save/restore 

2014-09-11 461a275 parallel: adding vmstate for save/restore 

2014-09-11 c0b92f3 fdc: adding vmstate for save/restore 

2014-09-11 4603ea0 cpu: init vmstate for ticks and clock offset 

2014-09-11 a6dead4 apic_common: vapic_paddr synchronization fix 

2014-09-05 6c3bff0 exec: Save CPUState::exception_index field 

2013-04-20 089305a i386 ROR r8/r16 instruction fix 

2012-06-15 b75a028 Prevent disk data loss when closing qemu 

2011-02-25 c7eb1f0 Fixing network over sockets implementation for win32 
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How can you use it? (1/3) 

• Deterministic debugging of devices’ 
implementation in QEMU 

– ROR r8/r16 
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How can you use it? (2/3) 

• Reverse debugging through GDB 
interface 

– user-mode programs 

– drivers 

– kernel 
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How can you use it? (3/3) 

• Capturing 
execution data for 
offline analysis 

– instructions 
sequence 

– memory accesses 

– network traffic 
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Future work 

• Up-streaming the rest of the bug-fixes 
• Up-streaming the reverse execution core patches 
• Up-streaming reverse debugging patches 
• Improving performance 

– Improve instructions counting to increase replaying 
speed 

– Reduce log saving overhead to improve usability 
– Save additional data for faster transition between 

states while replaying and debugging 

• Creating framework for testing of the 
deterministic replay 
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