
Memory Externalization With Memory Externalization With
userfaultfduserfaultfd

Red Hat, Inc.

Andrea Arcangeli
aarcange at redhat.com

Germany, Düsseldorf

15 Oct 2014

http://www.redhat.com/

2

Memory Externalization

● Memory externalization is about running a program with part (or
all) of its memory residing on a remote node

● Memory is transferred from the memory node to the compute
node on access

● Memory can be transferred from the compute node to the
memory node if it's not frequently used during memory pressure

● The Kernel needs new VM (as in Virtual Memory) features to
allow this kind of memory externalization

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

userfault

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memorymemory

pressure

3

Postcopy Memory Externalization

● Postcopy live migration is also some some form of one-way
memory externalization

● The compute node is running the qemu live migration
destination

● The memory node is running the qemu live migration source

● If we solve the memory externalization problem in a generic
way that can work for all linux applications, it will also allow
qemu to implement postcopy live migration

– Without requiring any KVM/virt specific patch

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

userfault

QEMU
source

QEMU
destination

Postcopy live migration

4

Initial Postcopy Live Migration

● The initial KVM postcopy live migration prototype from Isaku
Yamahata was very inspiring

● Great prototype to demonstrate it, but in production
environments its kernel backend would have disabled:

– Overcommit and swap

– THP

– KSM

– NUMA balancing

– NUMA hard bindings (mbind/set_mempolicy etc..)
● A special device driver would have required special privileges

similar to mlock()

● It could have been hardly adopted by non-virt users
– i.e. volatile pages on tmpfs

5

First problem: userfault

● qemu destination running in the compute node must be notified
the first time a page fault happens if a page is still missing

● To get the notification through SIGBUS (info->si_addr) we
introduced:

– madvise(MADV_USERFAULT)

– madvise(MADV_NOUSERFAULT)

Destination guest virtual memory (kernel side is a vma)

Unmapped virtual addresses (pages) must trigger userfault on access

6

SIGBUS userfault not enough

● SIGBUS is ok to trap userland accesses (like volatile pages)

● SIGBUS generates failures when kernel code tries to access
the unmapped virtual addresses:

– get_user_pages would return -EFAULT
● KVM page fault
● O_DIRECT I/O

– syscalls using copy_from_user/copy_to_user
● write()
● read()
● ...

● In qemu we might handle a special error from the /dev/kvm
ioctl, but we don't want to handle errors for all syscalls

7

Userfault ideal behavior

● What should happen when an userfault trigger is:

– The page fault of the thread that touched the unmapped
page is blocked

– One thread of the application is notified by the kernel about
an userfault having triggered at a certain address

– The thread transfers the missing page from the (remote)
memory node to the (local) compute node

– The thread maps the missing page at the userfault address
atomically

– The thread tells the kernel to wakeup any blocked page fault
for a certain virtual address range that was just mapped

– The waken up page fault retries the fault and finds the virtual
page mapped

8

Problem in blocking the page fault

● We want the userfault feature not to require special privilege

● Page faults runs while holding the mmap_sem for reading

● We cannot indefinitely block a page fault while holding a core
kernel lock

● The page fault flag “FAULT_FLAG_ALLOW_RETRY” if set
allows us to drop the mmap_sem (it was written to drop the
mmap_sem before I/O)

● Problem: many get_user_pages users don't set
FAULT_FLAG_ALLOW_RETRY when simulating the page fault

● get_user_pages_locked/unlocked fixes get_user_pages users
to always use FAULT_FLAG_ALLOW_RETRY

9

ufd = userfaultfd() - syscall

● The userfaultfd syscall provides userland a protocol to control
the userfaults in a way that is transparent to all syscalls and
get_user_pages kernel users

● An userland thread responsible to manage the userfaults can
listen to the userfaultfd to know the virtual addresses where any
userfault triggered

● After resolving the userfaults the thread just need to notify the
kernel about it, to wakeup any page fault that was blocked

● There can be an unlimited number of userfaultfd per process

– Shared libs can use userfaultfd independently of each other
and the main program

– Each userfaultfd must register its own userfault range
● MADV_USERFAULT must be set as well

10

How to resolve an userfault

● We must fill the unmapped virtual address

● The unmapped virtual address must be filled atomically

● We cannot remove MADV_USERFAULT if other threads could
access the unmapped address while we map the virtual
address

● A new syscall can fill unmapped virtual pages atomically

– remap_anon_pages(userfault_addr, tmp_addr, PAGE_SIZE)
● remap_anon_pages allows also to atomically “remove” a

mapped page from the userfault virtual range, to turn it into a
unmapped hole

– It works both ways

11

remap_anon_pages

1

2 3 4 5 6

tmp_addr

Guest physical address space

2 3 4 5 6

tmp_addr

Guest physical address space

1

12

userfaultfd + remap_anon_pages

Kernel Userland thread

userfault_addr = read(ufd) & PAGE_MASK

page fault calls handle_userfault()

Transfer page to tmp_addr page aligned

remap_anon_pages(userfault_addr,
 tmp_addr, PAGE_SIZE)

write(ufd, [userfault_addr,
 userfault_addr+PAGE_SIZE], 16)

raise POLLIN, wakeup the read(ufd,...)

handle_userfault() waken up and returns

Retry the fault at the userfault_addr

Wait in read(ufd) or for POLLIN from ufd

raise POLLIN & wakeup the read(ufd,...)

13

Atomic mcopy

● A new syscall could also be exposed to userland to fill
unmapped holes in anonymous or tmpfs regions atomically

– mcopy_atomic(userfault_addr, tmp_addr, PAGE_SIZE*N)
● Pros:

– Likely more efficient because it doesn't require TLB flushes

– No src_addr, dst_addr page alignment constraints

– It would work more easily for tmpfs backed userfaults,
regardless of the type of memory at the source address

– Simpler and self contained
● Cons

– Unable to remove pages from the userfault virtual range
● remap_anon_pages could still be used for that

14

mcopy_pages

1

2 3 4 5 6

tmp_addr

Guest physical address space

2 3 4 5 6

tmp_addr

Guest physical address space

Copy
Of 1

1

15

userfault and KVM

● Thanks to the KVM design (as usual)

– No change to KVM kernel driver was required

– All changes are in the core Linux Virtual Memory

– THP/KSM/NUMA balancing/NUMA bindings are
transparently supported on the userfault memory ranges

● Only the qemu balloon driver will need special handling during
postcopy live migration as MADV_DONTNEED would create
unmapped regions in the userfault area

– If the guest touches ballooned pages inflated during
postcopy live migration, the migration thread should not get
confused about it

– The userfault feature could also be used to enforce that the
guest cannot deflate the balloon

16

userfault and volatile pages

● Volatile pages are virtual memory ranges that the kernel can
discard under memory pressure without swapping them out

● The volatile pages patchset contemplated optionally to provide
the userfault-like SIGBUS behavior on access

● The userfault in addition to solving postcopy live migration and
the memory externalization feature, can provide the SIGBUS
notification to applications using volatile pages after their
eviction by setting MADV_USERFAULT on the volatile page
ranges

– In addition volatile pages could also use the userfaultfd
protocol to allow the kernel to access the volatile pages

– Without userfaultfd only userland access is allowed to avoid
getting unreliable errors from syscalls or get_user_pages

17

Userfault kernel patchset

● Last submit against 3.17-rc:

– http://thread.gmane.org/gmane.linux.kernel.mm/123575
– git clone git://git.kernel.org/pub/scm/linux/kernel/git/andrea/aa.git -b userfault

● Implements:

– gup_locked|unlocked (kernel internal dependency)

– gup_fast calling gup_unlocked (kernel internal dependency)

– MADV_USERFAULT|NOUSERFAULT
● SIGBUS info->si_addr

– remap_anon_pages(dst,src,len)

– ufd = userfaultfd(flags)
● Stress tested with thousands of postcopy live migrations

● Feedback is welcome to finalize the kernel API

http://thread.gmane.org/gmane.linux.kernel.mm/123575

18

Normal (i.e. Precopy) migration

– Keep copying state over until it's almost all there; long
enough you can allow it to be down

– Downtime is:
● Time to copy device state across
● Time to copy last bit of memory across

– Depends on guest work load – if it changes ram
quickly it might never finish.

Source CPU

Destination CPU

Network traffic

D
ow

nt
im

e

19

Postcopy migration

– Start the destination straight away – before all the RAM is over

– Downtime just the time to transfer other devices

– Each page copied once – upper bound on migration time

– Destination CPU stalls as it waits for pages of RAM
● Performance of destination reduced until finished

– Can mix with precopy
● e.g. precopy, switch to postcopy if it's taking too long)
● Source sends pages anyway before waiting for postcopy requests

– Many previous attempts
● Yabusame, Hecatonchire, Hines and Gopalan

Source CPU

Destination CPU

Network traffic

D
ow

nt
im

e

20

● 'userfault' to mark all of RAM
● 'remap_anon_pages' to place RAM as it

arrives
– Guest CPUs are running – this must be atomic

● Not just guest CPUs
– QEMU device threads

– Tricky when loading device state
● Must be able to service page requests while loading

device state from same stream.

'Destination CPU stalls as it waits for pages of RAM'

21

Flow

Kernel mmap
USER-
FAULT

Pause
guest
notify fd

remap restart
guest

QEMU Init Start
guest

read fd,
ask for
page

read
page

write fd

Guest Access Full
access

Net-work

Remote
page

Provide
page

22

Components

● Return path – Dest->src path along same socket
● Command section – for sending commands to destination (to

change postcopy state)
– Both Return path and Commands designed to be general

● Sent map – source records pages it sent – used by....
● Discard – for discarding pages that have been sent during

precopy, but are now dirty on the source
● Incoming map – destination records pages received and

pages requested
● Userfault handler

23

The migration stream

1 2 3 54b 64a 4c

1 'advise' command – Postcopy might happen later

2 normal precopy migration stream of pages

3 'discard' – Sparse bitmap of pages in (2) that have become dirty

4 'package' – A chunk of data loaded off the wire in one go

4a – 'listen' command – mark RAM as userfault

4b – device state

4c – 'run' command – starts destination CPUs running

5 background page transfers

6 Postcopy page transfers - Exactly the same on the wire as (5)

24

Threads

1 2 3 54b 64a 4c

Main thread: as normal migration

Postcopy/User fault thread

Postcopy/listener thread

Loading device state Free

● Extra threads started before loading device state
● Because it needs to be able to request pages during device

load.
● 'User fault' thread deals with kernel requests and sending them

back to source
● 'listener' thread carries on dealing with page loads

25

Page latencies

● With low wmem – latencies ~1ms
– (host qemu userspace-userspace)

7u
s

9u
s

20
us

40
us

60
us

80
us

10
0u

s

30
0u

s

50
0u

s

70
0u

s

90
0u

s

2m
s

4m
s

6m
s

8m
s

10
m

s

30
m

s

50
m

s

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Page latemcy

10GbE, low wmem

bucketed latencies (~log)

co
un

t

26

Page latencies...

● But with standard wmem it shoots up to
~10ms+

● Todo: Limit background page transfer rate to
reduce impact on postcopy pages

9u
s

20
us

40
us

60
us

80
us

10
0u

s

30
0u

s

50
0u

s

70
0u

s

90
0u

s

2m
s

4m
s

6m
s

8m
s

10
m

s

30
m

s

0

2000

4000

6000

8000

10000

12000

bucketed latencies (~log)

co
un

t

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

