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Memory Externalization

● Memory externalization is about running a program with part (or 
all) of its memory residing on a remote node

● Memory is transferred from the memory node to the compute 
node on access

● Memory can be transferred from the compute node to the 
memory node if it's not frequently used during memory pressure

● The Kernel needs new VM (as in Virtual Memory) features to 
allow this kind of memory externalization
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Postcopy Memory Externalization

● Postcopy live migration is also some some form of one-way 
memory externalization

● The compute node is running the qemu live migration 
destination

● The memory node is running the qemu live migration source

● If we solve the memory externalization problem in a generic 
way that can work for all linux applications, it will also allow 
qemu to implement postcopy live migration

– Without requiring any KVM/virt specific patch
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Initial Postcopy Live Migration

● The initial KVM postcopy live migration prototype from Isaku 
Yamahata was very inspiring

● Great prototype to demonstrate it, but in production 
environments its kernel backend would have disabled:

– Overcommit and swap

– THP

– KSM

– NUMA balancing

– NUMA hard bindings (mbind/set_mempolicy etc..)
● A special device driver would have required special privileges 

similar to mlock()

● It could have been hardly adopted by non-virt users
– i.e. volatile pages on tmpfs
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First problem: userfault

● qemu destination running in the compute node must be notified 
the first time a page fault happens if a page is still missing

● To get the notification through SIGBUS (info->si_addr) we 
introduced:

– madvise(MADV_USERFAULT)

– madvise(MADV_NOUSERFAULT)

Destination guest virtual memory (kernel side is a vma)

Unmapped virtual addresses (pages) must trigger userfault on access
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SIGBUS userfault not enough

● SIGBUS is ok to trap userland accesses (like volatile pages)

● SIGBUS generates failures when kernel code tries to access 
the unmapped virtual addresses:

– get_user_pages would return -EFAULT
● KVM page fault
● O_DIRECT I/O

– syscalls using copy_from_user/copy_to_user
● write()
● read()
● ...

● In qemu we might handle a special error from the /dev/kvm 
ioctl, but we don't want to handle errors for all syscalls
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Userfault ideal behavior

● What should happen when an userfault trigger is:

– The page fault of the thread that touched the unmapped 
page is blocked

– One thread of the application is notified by the kernel about 
an userfault having triggered at a certain address

– The thread transfers the missing page from the (remote) 
memory node to the (local) compute node

– The thread maps the missing page at the userfault address 
atomically

– The thread tells the kernel to wakeup any blocked page fault 
for a certain virtual address range that was just mapped

– The waken up page fault retries the fault and finds the virtual 
page mapped
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Problem in blocking the page fault

● We want the userfault feature not to require special privilege

● Page faults runs while holding the mmap_sem for reading

● We cannot indefinitely block a page fault while holding a core 
kernel lock

● The page fault flag “FAULT_FLAG_ALLOW_RETRY” if set 
allows us to drop the mmap_sem (it was written to drop the 
mmap_sem before I/O)

● Problem: many get_user_pages users don't set 
FAULT_FLAG_ALLOW_RETRY when simulating the page fault

● get_user_pages_locked/unlocked fixes get_user_pages users 
to always use FAULT_FLAG_ALLOW_RETRY
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ufd = userfaultfd() - syscall

● The userfaultfd syscall provides userland a protocol to control 
the userfaults in a way that is transparent to all syscalls and 
get_user_pages kernel users

● An userland thread responsible to manage the userfaults can 
listen to the userfaultfd to know the virtual addresses where any 
userfault triggered

● After resolving the userfaults the thread just need to notify the 
kernel about it, to wakeup any page fault that was blocked

● There can be an unlimited number of userfaultfd per process

– Shared libs can use userfaultfd independently of each other 
and the main program

– Each userfaultfd must register its own userfault range
● MADV_USERFAULT must be set as well
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How to resolve an userfault

● We must fill the unmapped virtual address

● The unmapped virtual address must be filled atomically

● We cannot remove MADV_USERFAULT if other threads could 
access the unmapped address while we map the virtual 
address

● A new syscall can fill unmapped virtual pages atomically

– remap_anon_pages(userfault_addr, tmp_addr, PAGE_SIZE)
● remap_anon_pages allows also to atomically “remove” a 

mapped page from the userfault virtual range, to turn it into a 
unmapped hole

– It works both ways
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remap_anon_pages
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userfaultfd + remap_anon_pages

Kernel Userland thread

userfault_addr = read(ufd) & PAGE_MASK

page fault calls handle_userfault()

Transfer page to tmp_addr page aligned

remap_anon_pages(userfault_addr,
 tmp_addr, PAGE_SIZE)

write(ufd, [userfault_addr,
 userfault_addr+PAGE_SIZE], 16)

raise POLLIN, wakeup the read(ufd,...)

handle_userfault() waken up and returns

Retry the fault at the userfault_addr

Wait in read(ufd) or for POLLIN from ufd

raise POLLIN & wakeup the read(ufd,...)
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Atomic mcopy

● A new syscall could also be exposed to userland to fill 
unmapped holes in anonymous or tmpfs regions atomically

– mcopy_atomic(userfault_addr, tmp_addr, PAGE_SIZE*N)
● Pros:

– Likely more efficient because it doesn't require TLB flushes

– No src_addr, dst_addr page alignment constraints

– It would work more easily for tmpfs backed userfaults, 
regardless of the type of memory at the source address

– Simpler and self contained
● Cons

– Unable to remove pages from the userfault virtual range
● remap_anon_pages could still be used for that
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mcopy_pages
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userfault and KVM

● Thanks to the KVM design (as usual)

– No change to KVM kernel driver was required

– All changes are in the core Linux Virtual Memory

– THP/KSM/NUMA balancing/NUMA bindings are 
transparently supported on the userfault memory ranges

● Only the qemu balloon driver will need special handling during 
postcopy live migration as MADV_DONTNEED would create 
unmapped regions in the userfault area

– If the guest touches ballooned pages inflated during 
postcopy live migration, the migration thread should not get 
confused about it

– The userfault feature could also be used to enforce that the 
guest cannot deflate the balloon
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userfault and volatile pages

● Volatile pages are virtual memory ranges that the kernel can 
discard under memory pressure without swapping them out

● The volatile pages patchset contemplated optionally to provide 
the userfault-like SIGBUS behavior on access

● The userfault in addition to solving postcopy live migration and 
the memory externalization feature, can provide the SIGBUS 
notification to applications using volatile pages after their 
eviction by setting MADV_USERFAULT on the volatile page 
ranges

– In addition volatile pages could also use the userfaultfd 
protocol to allow the kernel to access the volatile pages

– Without userfaultfd only userland access is allowed to avoid 
getting unreliable errors from syscalls or get_user_pages
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Userfault kernel patchset

● Last submit against 3.17-rc:

– http://thread.gmane.org/gmane.linux.kernel.mm/123575
– git clone git://git.kernel.org/pub/scm/linux/kernel/git/andrea/aa.git -b userfault

● Implements:

– gup_locked|unlocked (kernel internal dependency)

– gup_fast calling gup_unlocked (kernel internal dependency)

– MADV_USERFAULT|NOUSERFAULT
● SIGBUS info->si_addr

– remap_anon_pages(dst,src,len)

– ufd = userfaultfd(flags)
● Stress tested with thousands of postcopy live migrations

● Feedback is welcome to finalize the kernel API

http://thread.gmane.org/gmane.linux.kernel.mm/123575
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Normal (i.e. Precopy) migration

– Keep copying state over until it's almost all there; long 
enough you can allow it to be down

– Downtime is:
● Time to copy device state across
● Time to copy last bit of memory across

– Depends on guest work load – if it changes ram 
quickly it might never finish.
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Postcopy migration

– Start the destination straight away – before all the RAM is over

– Downtime just the time to transfer other devices

– Each page copied once – upper bound on migration time

– Destination CPU stalls as it waits for pages of RAM
● Performance of destination reduced until finished

– Can mix with precopy
● e.g. precopy, switch to postcopy if it's taking too long)
● Source sends pages anyway before waiting for postcopy requests

– Many previous attempts
● Yabusame, Hecatonchire, Hines and Gopalan
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● 'userfault' to mark all of RAM
● 'remap_anon_pages' to place RAM as it 

arrives
– Guest CPUs are running – this must be atomic

● Not just guest CPUs
– QEMU device threads

– Tricky when loading device state
● Must be able to service page requests while loading 

device state from same stream.

'Destination CPU stalls as it waits for pages of RAM'
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Flow
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Components

● Return path – Dest->src path along same socket
● Command section – for sending commands to destination (to 

change postcopy state)
– Both Return path and Commands designed to be general

● Sent map – source records pages it sent – used by....
● Discard – for discarding pages that have been sent during 

precopy, but are now dirty on the source
● Incoming map – destination records pages received and 

pages requested
● Userfault handler
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The migration stream

1 2 3 54b 64a 4c

1 'advise' command – Postcopy might happen later

2 normal precopy migration stream of pages

3 'discard' – Sparse bitmap of pages in (2) that have become dirty

4 'package' – A chunk of data loaded off the wire in one go

4a – 'listen' command – mark RAM as userfault

4b – device state

4c – 'run' command – starts destination CPUs running

5 background page transfers

6 Postcopy page transfers - Exactly the same on the wire as (5)
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Threads

 
1 2 3 54b 64a 4c

Main thread: as normal migration

Postcopy/User fault thread

Postcopy/listener thread

Loading device state Free

● Extra threads started before loading device state
● Because it needs to be able to request pages during device 

load.
● 'User fault' thread deals with kernel requests and sending them 

back to source
● 'listener' thread carries on dealing with page loads
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Page latencies

● With low wmem – latencies ~1ms
–  (host qemu userspace-userspace)
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Page latencies...

● But with standard wmem it shoots up to 
~10ms+

● Todo: Limit background page transfer rate to 
reduce impact on postcopy pages
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