
Migration: Trying to make it more robust

Red Hat

Juan Quintela

KVM Forum 2014
Düsseldorf

Abstract

This talk shows what are the things we have done to improve
migration to make it less fragile.

1 / 23

Agenda

1 What have we done?

2 What are the future plans?

3 Anything else you need?

4 Questions

2 / 23

Section 1
What have we done?

3 / 23

What have we done?

Bitmap Logging (GSOC)

Sanidhya: GSOC student

Dump dirty bitmap to log file

How much we want to do it

The period

This allows to study how much one work load is dirtying memory,
and have an idea of how long it is going to take to migrate.

4 / 23

What have we done?

VMState continuous testing (GSOC)

Sanidhya: GSOC student
What is migration?

dump memory through the network

stop guest

dump device state

continue on target

5 / 23

What have we done?

VMState continuous testing (II)

What if we do in a loop

stop guest

dump device state to memory

reset guest devices

load device state

continue

6 / 23

What have we done?

VMState continuous testing (III)

Why?

We have more problems with devices than with memory

We can repeat this as much as we want, on the same load

If there is any problem, we really know the state of the device
that is causing us problems

Really the infrastructure was there already

Problems, as usual, are on the details

7 / 23

What have we done?

Migration Checker (Amit)

Presented on KVM Forum last year

Integrated since

Output device state meta data in json

We can compare the output of two qemus and see if they are
the same/compatible

8 / 23

What have we done?

VMState Validate (mst)

Aserts

To make sure that the values that we got make sense

how to add the asserts

example

VMSTATEVALIDATE(”num timers in range”, hpet validate num timers) ,

9 / 23

What have we done?

VMState Testing

there were no test for VMState

false, Eduardo created the tests for some types

added tests for every VMState* type

or I removed it

10 / 23

What have we done?

VMState Testing(II)

A simplification? You call this a simplification?

raw diff

git diff origin/master | diffstat
.
vmstate.c | 98 +
127 f i les changed, 2671 insertions(+), 955 deletions(−)

11 / 23

What have we done?

VMState Testing(III)

We added tests for all VMState macro. If we remove that file,
simplification shows
tests

wc−l tests/test−vmstate.c
2301 tests/test−vmstate.c

12 / 23

Section 2
What are the future plans?

13 / 23

What are the future plans?

Generated fields

tests

{
.name = ”fpcr”,
. version id = 0,
. size = sizeof(uint64 t) ,
. info =&vmstate fpcr ,
. flags =VMSSINGLE,
. offset = 0

},

14 / 23

What are the future plans?

Generated fields (II)

current

#define VMSTATEINT64(f , s , v) . . .

proposed

#define VMSTATEINT64G(f , s , v , read , write)

x

users that can be converted

#define VMSTATEUINT8EQUAL(f , s) \
#define VMSTATEVALIDATE(. . . .)

15 / 23

What are the future plans?

Move to visitors

current

void qemu put be64(QEMUFile ∗f , uint64 t v);

current

fops−>put be64(opaque, fops , v);

We already have QEMUFile, writing to a buffer and would be
needed for any change in format that we see fit.

16 / 23

What are the future plans?

Format

Put here your preferred rant here.

17 / 23

What are the future plans?

Optional sections

Patch just posted as RFC

... OK, this morning...

18 / 23

What are the future plans?

Optional sections

Patch just posted as RFC

... OK, this morning...

18 / 23

What are the future plans?

One last thing

We have done it wrong until now!

What inter-version migration should we be allowing

current: qemu-old -M pc to qemu-new -M pc

What is pc?

Really what we are doing is the equivalent of

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.2

or qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.2

or you get the idea

19 / 23

What are the future plans?

One last thing

We have done it wrong until now!

What inter-version migration should we be allowing

current: qemu-old -M pc to qemu-new -M pc

What is pc?

Really what we are doing is the equivalent of

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.2

or qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.2

or you get the idea

19 / 23

What are the future plans?

One last thing

We have done it wrong until now!

What inter-version migration should we be allowing

current: qemu-old -M pc to qemu-new -M pc

What is pc?

Really what we are doing is the equivalent of

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.2

or qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.2

or you get the idea

19 / 23

What are the future plans?

One last thing

We have done it wrong until now!

What inter-version migration should we be allowing

current: qemu-old -M pc to qemu-new -M pc

What is pc?

Really what we are doing is the equivalent of

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.2

or qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.2

or you get the idea

19 / 23

What are the future plans?

One last thing

We have done it wrong until now!

What inter-version migration should we be allowing

current: qemu-old -M pc to qemu-new -M pc

What is pc?

Really what we are doing is the equivalent of

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.2

or qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.2

or you get the idea

19 / 23

What are the future plans?

One last thing

We have done it wrong until now!

What inter-version migration should we be allowing

current: qemu-old -M pc to qemu-new -M pc

What is pc?

Really what we are doing is the equivalent of

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.2

or qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.2

or you get the idea

19 / 23

What are the future plans?

One last thing

We have done it wrong until now!

What inter-version migration should we be allowing

current: qemu-old -M pc to qemu-new -M pc

What is pc?

Really what we are doing is the equivalent of

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.2

or qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.2

or you get the idea

19 / 23

What are the future plans?

One last thing

We have done it wrong until now!

What inter-version migration should we be allowing

current: qemu-old -M pc to qemu-new -M pc

What is pc?

Really what we are doing is the equivalent of

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.2

or qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.2

or you get the idea

19 / 23

What are the future plans?

Why not limit the problem?

Machine type should be the same for migration to work

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.1

qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.0

This is testable, we only allow a limited number of
interversion migrations

This is basically what we do on Red Hat

We can make a policy when some version compatiblity is
dropped

Worst case: ship old and new device

20 / 23

What are the future plans?

Why not limit the problem?

Machine type should be the same for migration to work

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.1

qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.0

This is testable, we only allow a limited number of
interversion migrations

This is basically what we do on Red Hat

We can make a policy when some version compatiblity is
dropped

Worst case: ship old and new device

20 / 23

What are the future plans?

Why not limit the problem?

Machine type should be the same for migration to work

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.1

qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.0

This is testable, we only allow a limited number of
interversion migrations

This is basically what we do on Red Hat

We can make a policy when some version compatiblity is
dropped

Worst case: ship old and new device

20 / 23

What are the future plans?

Why not limit the problem?

Machine type should be the same for migration to work

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.1

qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.0

This is testable, we only allow a limited number of
interversion migrations

This is basically what we do on Red Hat

We can make a policy when some version compatiblity is
dropped

Worst case: ship old and new device

20 / 23

What are the future plans?

Why not limit the problem?

Machine type should be the same for migration to work

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.1

qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.0

This is testable, we only allow a limited number of
interversion migrations

This is basically what we do on Red Hat

We can make a policy when some version compatiblity is
dropped

Worst case: ship old and new device

20 / 23

What are the future plans?

Why not limit the problem?

Machine type should be the same for migration to work

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.1

qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.0

This is testable, we only allow a limited number of
interversion migrations

This is basically what we do on Red Hat

We can make a policy when some version compatiblity is
dropped

Worst case: ship old and new device

20 / 23

What are the future plans?

Why not limit the problem?

Machine type should be the same for migration to work

qemu-2.1 -M pc-2.1 to qemu-2.2 -M pc-2.1

qemu-2.0 -M pc-2.0 to qemu-2.2 -M pc-2.0

This is testable, we only allow a limited number of
interversion migrations

This is basically what we do on Red Hat

We can make a policy when some version compatiblity is
dropped

Worst case: ship old and new device

20 / 23

Section 3
Anything else you need?

21 / 23

Section 4
Questions

22 / 23

The end.
Thanks for listening.

23 / 23

	What have we done?
	What are the future plans?
	Anything else you need?
	Questions

