
Software R&D Center

Optimizing I/O Virtualization
&

VM Memory Management
for Tablet Devices

October 14th, 2014

Bokdeuk Jeong, Jaeyong Yoo, Sung-Min Lee

Software R&D Center, Samsung Electronics

Vasily Leonenko

Samsung R&D Institute Russia, Samsung Electronics

Software R&D Center

QEMU/KVM

RUNNING WINDOWS ON
ANDROID

Software R&D Center

Running Another OS on Android

• Windows 8.1 on Android KitKat

 w/ Atom Tablet

 Looks like this 

HW spec:

Baytrail (Atom Z3775, 1.46 GHz)

3GB RAM

64GB eMMC 5.0

VM:
4 VCPUs, 1GB RAM

16GB used (30GB disk image)

Windows 8.1 32bit

Software R&D Center

Running Another OS on Android

• How To Run Windows on
Android with KVM/QEMU

– Limbo-Android

• Runs QEMU on Android

– Intel’s Talk at KVM Forum 2013

• Enabled Limbo w/ KVM support

• Added missing system calls &
POSIX functions

– Samsung did

• Rebased Limbo to QEMU 1.7.1

• Used 32-bit Android Kernel with
PAE
for Windows to use the NX bit

• VM w/ more than 1GB RAM
support on 32-bit Android kernel

• Samsung also added
– Multitouch

• USB multitouch support

– Bluetooth
• Bluetooth pass-through

– WIFI Access
• Wi-Fi access via virtual

Ethernet

– Battery charge status sync
• via ACPI

– Audio
• Interface with OpenSLES

– Graphic Virtualization based
on API-forwarding

Software R&D Center

Finding Another Missing Pieces

• Running Windows 8.1 VM on Android as an App

– An app should start instantly.

• “5 seconds is the max time most mobile user will wait for a website or
application to load. 74% will leave a mobile website if it doesn’t load within
5 seconds, and 50% will exit an app.” (infographic)

 Start VM with a snapshot

– Android kills an app in background with the heaviest memory
usage first when it is low on memory

• By Low Memory Killer in Kernel

• By Activity Manager Service

 Utilize automatic VM memory balloon & suspend/resume

– Virtualized I/O devices in QEMU should interface with Android
world

• HIDs, Audio, Bluetooth, Battery Charging Status, Display and etc.

Software R&D Center

QEMU/KVM

STARTING UP VM WITHIN 5
SECONDS

Software R&D Center

Fast VM Startup

• Displaying Metro UI after Boot

• VM Startup from Snapshot* w/ Existing QEMU

• VM Startup from Snapshot* w/ QEMU Modification

QEMU 48.3 ~ 50 Seconds bios Windows Booting

3.3 seconds
for initialization

45 seconds
- with no change from the previous VM run

+ ∝
- If changes in VM occurred
 during the last run
- If disk image is not clean

Auto Login

QEMU 10.4 seconds

3.0 seconds
for initialization

7.4 seconds for loading VM snapshot

QEMU 5.4 Seconds

1.2 seconds
for initialization

4.2 seconds for loading VM snapshot

* Snapshot size: 574MB (taken at the Metro UI screen)

Software R&D Center

Fast VM Startup

• Modification on Saving and Loading Snapshots (1/2)

– Separate file for VM State only

• Reduces time for L1/L2 table lookup in qcow2

• Reduces time for meta data lookup of a qcow2 file (> 15GB) in the host
kernel

– Resize QEMUFile buf from 32KB to 512KB

– Read-ahead hint API

• Set read-ahead for snapshot area in the qcow2 snapshot file

• Using fadvise() with POSIX_FADV_SEQUENTIAL

Software R&D Center

Fast VM Startup

• Modifications on Saving and Loading Snapshots (2/2)

– Save contiguous non-zero pages larger than 512KB together after a
single header

– Load the contiguous non-zero RAM state directly to VM RAM
• Avoids memory copy overhead

RAM_SAVE_FLAG_LARGE_PAGE

addr w/ flags
(8bytes)

memory contents

(4KB)

addr w/ flags

…

memory contents

(4KB)

ch
(1byte)

addr w/ flags
ch

(1byte)
addr w/ flags

addr w/ flags
(8bytes)

memory contents

(> 512KB)

pages
(1byte)

ch
(1byte)

addr w/ flags
ch

(1byte)
addr w/ flags

RAM_SAVE_FLAG_PAGE

Layout of RAM
Snapshot

Layout of RAM
Snapshot

Load to the QEMUFile buffer

Copy to the VM RAM

Load to the VM RAM directly

zero page zero page

Software R&D Center

Fast VM Startup

• Disable unused virtual device & modules

– floppy disk, vmmouse

– USB companion controllers

– qemu monitor

– qmp socket

• Enable nodefaults option

• THP w/ zero-pages disabled

• Eliminate redundant qemu_system_reset() call

<vl.c>

int main(int argc, char **argv, char **envp)
{
 …
 qemu_system_reset(VMRESET_SILENT);
 if (loadvm) {
 if (load_vmstate(loadvm) < 0) {
 autostart = 0;
 }
 }
 …

<savevm.c>

int load_vmstate(const char *name)
{
 …
 qemu_system_reset(VMRESET_SILENT);
 ret = qemu_loadvm_state(f);
 …
}

Removed

Software R&D Center

QEMU/KVM

BALLOONING VM MEMORY
ACCORDING TO THE
FOREGROUND SCREEN DISPLAY

Software R&D Center

Android-based Ballooning

Low Memory Killer
as a registered shrinker

Approach II:
on lowmem_shrink() call

KERNEL

Android Activity
Manager Service

LIMBO/QEMU

Approach I:
on updateOomAdjLocked() call

/proc/meminfo /proc/zoneinfo

get free memory size get watermark

/sys/module/lowmemoryk
iller/parameters/minfree

get minfree

Balloon
Backend

AMS callback + LMK callback

eventfd

Ballooning Android I/F

• MinFree Table of LMK
Process
type

 Foreground Visible Perceptible, Backup Heavy Weight, Service, Home, Previous, Service_B Cached
App Min

Cached App Max,
Unknown

Adj Value 0~ 1~ 2 ~ 4~ 9~ 15~

Oom Min
Free

48MB 60MB 72MB 84MB 96MB 128MB

Software R&D Center

Ballooning: VM Execution at Foreground

Guest has higher priority of using memory. Let VM freely use its memory

• Try to keep guest VM memory pressure small

• But, don’t let Android sacrifice important apps for VM

QEMU Guest (Windows)

Linux Kernel (3.10+)

Balloon Backend Balloon Frontend

Guest memory

2. DEFLATE OO MB

3. Send a list of guest physical page frames that
balloon freed

4. madvise(addr, len, MADV_WILLNEED)

2. deflate

dvq

Host free memory pool

1. Detect Guest Memory
Pressure Balloon

…
A
p
p
 n

O
S

A
p
p
 1free

- VM memory pressure = (Total Mem – Free Mem)/Total Mem

- VM memory pressure < FG_VM_Mem_Pressure (e.g. 75%)

- important apps: Visible apps, Perceptible apps, Services ..
- e.g.) FG_Host_Mem_Threshold = Minfree[3] (e.g. 84MB)

Software R&D Center

Ballooning: VM Execution at Background

Host apps have higher priority of using memory. Yield guest memory as
much as it can.

• Try to keep host free memory > BG_Host_Mem_Threshold

• But, don’t cause severe guest page swap

QEMU Guest (Windows)

Linux Kernel (3.10+)

Balloon Backend Balloon Frontend

Guest memory

2. Inflate OO MB

3. Send a list of guest physical page frames that
balloon allocated

4. madvise(addr, len, MADV_DONTNEED)

2. Inflate

ivq

Host free memory pool

1. Detect Host
Memory Pressure Balloon

…
A
p
p
 n

O
S

A
p
p
 1

Low Memory Killer

Android
Activity Manager

Service

eventfd

0. Notify low free memory

alloc

BG_Host_Mem_Threshold = MAX(Minfree[5],
 SUM(low watermark of lowmem, low watermark of highmem))
 + margin

 VM memory pressure < BG_VM_Mem_Pressure (e.g 95%)

Software R&D Center

Ballooning: Experiment Result

0

200000

400000

600000

800000

1000000

26259 26309 26359 26409 26459 26509 26559

k
il
o

b
y
te

s

time (sec)

Switch
Android -> VM

Killed the
host app

The host app
has allocated

800MB

A host app
starts

allocating
memory.

Switch
VM -> Android

Killed apps
in VM

Guest VM RAM: 1GB
VM Memory Pressure at Background: 100%

The host app
has allocated

300MB

Without balloon,
VM was killed at

this point.

Software R&D Center

QEMU/KVM

INTERFACING ANDROID WITH
QEMU VIRTUAL DEVICES

Software R&D Center

I/O Devices: Newly Added Virtual Devices

QEMU

Host Kernel

USB stack

QEMU HID
subsystem

Guest VM

SurfaceView

Android UI
event handler
(ui/android.c)

Keyboard,
Mouse, Touch

Listeners

usb-multitouch

multitouch

newly added

usb-bt

Bluedroid

 bluetooth.default.so

Protocol multiplexer

RAW HCI

libOpenSLES.so

OpenSL Interface
(audio/opensl.c)

Audio stack

intel-hda

Limbo

SMBus

Power
Source

Battery

ACPI

Battery Intent
Receiver

ACPI
Namespace

DSDT

Power Source

Battery

SMB controller

Software R&D Center

I/O Devices: Features

• HID
– USB Multi-touch

– Mouse 3-buttons, hover functionalities

• Bluetooth
– Bluetooth HCI Pass-through

– Bluedroid modification to support HCI raw data

• Sound
– OpenSL interface in QEMU maintains a lock-free ring buffer to pass samples to OpenSL

– Used asynchronous queue processing maintained by OpenSL

• ACPI
– Added Objects to ACPI namespace in Guest VM

– Power Source: implements standard ACPI power source protocol

– Battery: implements standard ACPI control method battery protocol

– SMBus Controller: connection based on SMBus

Software R&D Center

Large VM Memory Support on 32-bit kernel

QEMU/Limbo Virtual Memory

0

2
5
6

5
1
2

7
6
8

1
0
2
4

1
2
8
0

1
5
3
6

1
7
9
2

2
0
4
8

2
3
0
4

2
5
6
0

2
8
1
6

3
0
7
2

Guest Physical Memory

0

2
5
6

5
1
2

7
6
8

1
0
2
4

1
2
8
0

1
5
3
6

1
7
9
2

2
0
4
8

2
3
0
4

2
5
6
0

2
8
1
6

3
0
7
2

KB KB
Lower boundary of the mmap virtual memory area
#define TASK_UNMAPPED_BASE
 (TASK_SIZE / 3) == 1GB

Unused area by Limbo (i.e. android apps)
(Linux process used to allocate this area for Text, Data, BSS segments)

Software R&D Center

Acknowledgment

• Many thanks for individual contribution

– Je-Min Kim

– Jae Min Kim

– Sungjin Kim

– Byung Chul So

– Min Kang

– Yong Hyeok Lee

– Junbong Yu

– Chanju Park

– Anatoly Stepanov

– Petr Ovchenkov

– Sergey Vorm

– Stanislav Andreev

– Anton Yakovlev

– Svetlana Khafizova

Software R&D Center

Thank you

