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ex·e·ge·sis / eksi jēsis/ˌ ˈ
noun (plural: exegeses)

    critical explanation or interpretation of a text
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πό (from, out of) + καλύπτω (to hide)Ἀ

uncovering, disclosure of what's hidden
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Outline

● What is the QEMU Object Model?
● How do you use QOM?
● How could we improve QOM?
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Why QOM?

All device creation, device configuration,
backend creation and backed configuration

done through a single interface

Rigorous support for introspection both of
runtime objects and type capabilities
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Did it work?
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Do pie charts look like Pac Man?

% of pie charts that
look like Pac Man

% of pie charts
that do not look

like Pac Man
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The QOM reality

● RNG backend
● Memory backend
● Console
● Device
● IRQ
● MemoryRegion
● Machine
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The QOM reality

✔New backends use QOM (RNG, memory 
device)

✔Clear model of object lifetime

✔Simple, type-safe QMP interface

✗ Limited type introspection

✗ Original intended interface mostly unused
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What happened?

● Bad design? No.
● QOM integrates well with the rest of QEMU
● All problems are fixable

● Solution in search of a problem? Somewhat.
● Adding new backends happens rarely
● Introspection already part of qdev & vmstate

● No transition/completion plan? Totally.
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The rest of this talk

✔New backends use QOM (RNG, memory 
device)

✔Clear model of object lifetime

✔Simple, type-safe QMP interface

✗ Limited type introspection

✗ Original intended interface mostly unused



  

QOM properties
and introspection
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QOM in practice

● Inheritance (single inheritance + interfaces)
● Polymorphic objects (class based)
● Polymorphic properties (prototype based)
● Object enumeration (“composition tree”)
● Generalized factory interface
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QOM concepts: properties

● Properties are the external interface to an 
object

● Different uses of properties:
● For construction: set before the object is “started”
● For inspection: read after the object is “started”
● Very few examples of the second kind :)

● Similar to Linux sysfs, with arbitrary QAPI 
structs instead of bytes
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A step back: the QAPI vision

“QAPI is a framework to move QEMU
to the next level of feature, function, and 

robustness”
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More practically...

● Decompose serialization into
● Marshaling (composite → primitive type)
● Transport (primitive type ↔ representation)

● Marshaling done by automatically generated 
code

● Transport done by hand written “visitors”
● QObject (JSON), QemuOpts (key/value pairs), string
● “Input” vs. “output” visitors
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It works!
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Fundamental QAPI data types

● Scalar JSON types: Integer, string, boolean
● Homogeneous arrays (xyzList)

● Non-homogeneous JSON arrays never used

● Enums (JSON String ↔ C enum)
● Records (including discriminated records)

● Serialized as JSON dictionaries
● Strongly-typed
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QOM property types

● Non-object
● Example: isa-serial.iobase=0x402
● QOM property types are QAPI types

● Object
● child<X> provides the canonical path to an object
● link<X> provides alternative paths

● Aliases
● Same type as the target, except child<X> → link<X>
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QOM properties under the hood

● All properties are accessed through visitors:
typedef void (ObjectPropertyAccessor)(Object *obj,
     Visitor *v, void *opaque,
     const char *name, Error **errp);
typedef void (ObjectPropertyRelease)(Object *obj,
     const char *name, void *opaque);

● Similar to Linux sysfs, visitors instead of files
● Wrappers for strings and bools

● Again, think of Linux seqfile
● Still some boilerplate, but not too bad
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Visitors in QOM

● QObject (type-safe!)
{ 'execute': 'object-add', 'arguments': {
   'id': 'my-rng', 'type': 'rng-random',
   'props': { 'filename': '/dev/random' } }

● QemuOpts (key/value pair)
qemu -object rng-random,id=my-rng,filename=/dev/random

object_add rng-random,id=my-rng,filename=/dev/random

● String (scalar-only)
● -device
● info qtree (“human” mode)
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Creating an object

Object *o = object_new(TYPE_RNG_BACKEND_RANDOM);
object_property_set_str(o, “filename”, “/dev/random”, NULL);
object_property_set_bool(o, “opened”, “true”, NULL);

object_property_add_child(container_get(“/somewhere”),
                          “my-rng”, o, NULL);
object_unref(o);
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Inside properties

static bool rng_get_opened(Object *obj, Error **errp)
{
    RngBackend *s = RNG_BACKEND(obj);
    return s->opened;
}

static void rng_set_opened(Object *obj, bool value,
                           Error **errp)
{
    RngBackend *s = RNG_BACKEND(obj);
    RngBackendClass *k = RNG_BACKEND_GET_CLASS(s);

    ...

    if (k->opened) {
        k->opened(s, errp)
    }
}
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Inside properties

static void rng_backend_init(Object *obj)
{
    object_property_add_bool(obj, "opened",
               rng_get_opened, rng_set_opened, NULL);
}

static const TypeInfo rng_backend_info = {
    .name          = TYPE_RNG_BACKEND,
    .parent        = TYPE_OBJECT,
    .instance_size = sizeof(RngBackend),
    .instance_init = rng_backend_init,
    .class_size    = sizeof(RngBackendClass),
    .abstract      = true,
};
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The two sides of QOM

● Class-based methods/interface polymorphism
➔ Cannot override a method for a single object

● Object-based, dynamic properties
➔ Each instance of a class can have different 

properties

● Except for child properties, all properties 
are usually handled as if they were static

● So why the difference?



KVM Forum 2014

Uses of dynamic properties

● “Child” properties do not “exist” until the 
embedded object is created with object_new()
● MemoryRegions in a device
● e.g. /objects contains /foo after “-object id=foo”

● “Array” properties
● e.g. pci-host/pci-bus/child[12]
● Not array-typed properties!
● Usually children or links
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Dynamic properties vs. introspection

● Property names and types are an object's 
schema

● With dynamic properties, the schema is not 
known in advance

● “Solution”: instantiate a temporary object, 
examine it, delete it

● Implemented for “-device foo,help”
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Towards a QOM schema?

● No QAPI schema introspection in QEMU
● Patches stuck?
● Prerequisite for QOM introspection (QOM property 

types can be arbitrary QAPI types)

● Should we expose a QOM schema via QAPI?
● Similar to “-device foo,help”, but for objects
● Dummy object creation, or static properties?
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QOM object lifetime
and the composition tree
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QOM composition tree

/machine

/peripheral

/serial0   -device isa-serial,id=serial0,iobase=0x3f8,...

/unattached

/device[0] (PCI host)

/device[1] (fw_cfg)

...

/objects

/rng0           -device rng-random,...

/backends
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The QOM tree keeps an object alive!

Example:
(qemu) object-add rng-random,id=rng0,filename=/dev/random
(qemu) device-add virtio-rng-pci,rng=rng0
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Birth of a QOM object

● Creation (object_new)
● instance_initialize
● No parent
● Properties initialized to default values

● Preparation
● object_property_add_child
● Values written to properties
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... and here comes the fun part!

● Activation
● qdev_init
● user_creatable_complete

● Deactivation
● object_unparent

● Finalization
● instance_finalize
● g_free

• • •  suspence  • • •  
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object_unparent

● Initiated by guest or management
● Deletes the child<X> property

● Calls the unparent callback
● Makes the object unreachable from the composition 

tree
● Drops a reference to the object

● Usually the last reference goes away
● All properties are deleted
● Effect: recursive unparenting of children
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What should the unparent callback do?

● “Ultimately” cause the object to die
● Hide itself from the guest
● Eliminate circular links by propagating unparent 

to other objects (e.g. child buses)
● No circular links? Finalization will handle tear down 

just fine!

● As soon as the guest finishes using it, the 
object will be finalized
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Pattern: references from child to parent

● Children usually oblivious of parent
● If not, how to avoid dangling pointers?

 Parent keeps children alive via composition tree

 Children keep parent alive via reference counting

● How to avoid circular references?
 References to the parent should be weak; only 

take a reference to the parent during guest 
actions (e.g. MMIO accesses)

● Guest actions cannot happen after unparent 
returns → no window for dangling pointers!
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Pattern: references from child to parent

● Separate reference-counting APIs
● memory_region_ref/unref

Guest action, add/remove reference to the QOM 
parent (device)

● object_ref/unref
Management action, add/remove reference to the 
object itself

● memory_region_ref/unref implicitly keeps 
MemoryRegion alive (via child property)
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The future: “Owner” vs. “parent”?

● Example: MemoryRegion needs to know its 
parent device
● Currently, children do not need to control the 

lifetime of their grandparents
● Is that really the rule?

● Counterexample: implementing PCI 
configuration space as MemoryRegions

● /.../pci-device/msix-capability/region

● Config space accesses bypass the capability object
● The MemoryRegion has to keep the device alive
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The future: “Owner” vs. “parent”?

● Right now, MemoryRegion always “refs” the 
QOM parent

● In the future, we could add a new API 
memory_region_set_owner



  

So, does it work?



  Yes!
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