
KVM Forum 2014

QOM exegesis and apocalypse

Paolo Bonzini
Red Hat, Inc.
KVM Forum 2014

KVM Forum 2014

ex·e·ge·sis / eksi jēsis/ˌ ˈ
noun (plural: exegeses)

 critical explanation or interpretation of a text

KVM Forum 2014

KVM Forum 2014

KVM Forum 2014

πό (from, out of) + καλύπτω (to hide)Ἀ

uncovering, disclosure of what's hidden

KVM Forum 2014

Outline

● What is the QEMU Object Model?
● How do you use QOM?
● How could we improve QOM?

KVM Forum 2014

Why QOM?

All device creation, device configuration,
backend creation and backed configuration

done through a single interface

Rigorous support for introspection both of
runtime objects and type capabilities

KVM Forum 2014

KVM Forum 2014

Did it work?

KVM Forum 2014

Do pie charts look like Pac Man?

% of pie charts that
look like Pac Man

% of pie charts
that do not look

like Pac Man

KVM Forum 2014

The QOM reality

● RNG backend
● Memory backend
● Console
● Device
● IRQ
● MemoryRegion
● Machine

KVM Forum 2014

The QOM reality

✔New backends use QOM (RNG, memory
device)

✔Clear model of object lifetime

✔Simple, type-safe QMP interface

✗ Limited type introspection

✗ Original intended interface mostly unused

KVM Forum 2014

What happened?

● Bad design? No.
● QOM integrates well with the rest of QEMU
● All problems are fixable

● Solution in search of a problem? Somewhat.
● Adding new backends happens rarely
● Introspection already part of qdev & vmstate

● No transition/completion plan? Totally.

KVM Forum 2014

The rest of this talk

✔New backends use QOM (RNG, memory
device)

✔Clear model of object lifetime

✔Simple, type-safe QMP interface

✗ Limited type introspection

✗ Original intended interface mostly unused

QOM properties
and introspection

KVM Forum 2014

QOM in practice

● Inheritance (single inheritance + interfaces)
● Polymorphic objects (class based)
● Polymorphic properties (prototype based)
● Object enumeration (“composition tree”)
● Generalized factory interface

KVM Forum 2014

QOM concepts: properties

● Properties are the external interface to an
object

● Different uses of properties:
● For construction: set before the object is “started”
● For inspection: read after the object is “started”
● Very few examples of the second kind :)

● Similar to Linux sysfs, with arbitrary QAPI
structs instead of bytes

KVM Forum 2014

A step back: the QAPI vision

“QAPI is a framework to move QEMU
to the next level of feature, function, and

robustness”

KVM Forum 2014

More practically...

● Decompose serialization into
● Marshaling (composite → primitive type)
● Transport (primitive type ↔ representation)

● Marshaling done by automatically generated
code

● Transport done by hand written “visitors”
● QObject (JSON), QemuOpts (key/value pairs), string
● “Input” vs. “output” visitors

KVM Forum 2014
It works!

KVM Forum 2014

Fundamental QAPI data types

● Scalar JSON types: Integer, string, boolean
● Homogeneous arrays (xyzList)

● Non-homogeneous JSON arrays never used

● Enums (JSON String ↔ C enum)
● Records (including discriminated records)

● Serialized as JSON dictionaries
● Strongly-typed

KVM Forum 2014

QOM property types

● Non-object
● Example: isa-serial.iobase=0x402
● QOM property types are QAPI types

● Object
● child<X> provides the canonical path to an object
● link<X> provides alternative paths

● Aliases
● Same type as the target, except child<X> → link<X>

KVM Forum 2014

QOM properties under the hood

● All properties are accessed through visitors:
typedef void (ObjectPropertyAccessor)(Object *obj,
 Visitor *v, void *opaque,
 const char *name, Error **errp);
typedef void (ObjectPropertyRelease)(Object *obj,
 const char *name, void *opaque);

● Similar to Linux sysfs, visitors instead of files
● Wrappers for strings and bools

● Again, think of Linux seqfile
● Still some boilerplate, but not too bad

KVM Forum 2014

Visitors in QOM

● QObject (type-safe!)
{ 'execute': 'object-add', 'arguments': {
 'id': 'my-rng', 'type': 'rng-random',
 'props': { 'filename': '/dev/random' } }

● QemuOpts (key/value pair)
qemu -object rng-random,id=my-rng,filename=/dev/random

object_add rng-random,id=my-rng,filename=/dev/random

● String (scalar-only)
● -device
● info qtree (“human” mode)

KVM Forum 2014

Creating an object

Object *o = object_new(TYPE_RNG_BACKEND_RANDOM);
object_property_set_str(o, “filename”, “/dev/random”, NULL);
object_property_set_bool(o, “opened”, “true”, NULL);

object_property_add_child(container_get(“/somewhere”),
 “my-rng”, o, NULL);
object_unref(o);

KVM Forum 2014

Inside properties

static bool rng_get_opened(Object *obj, Error **errp)
{
 RngBackend *s = RNG_BACKEND(obj);
 return s->opened;
}

static void rng_set_opened(Object *obj, bool value,
 Error **errp)
{
 RngBackend *s = RNG_BACKEND(obj);
 RngBackendClass *k = RNG_BACKEND_GET_CLASS(s);

 ...

 if (k->opened) {
 k->opened(s, errp)
 }
}

KVM Forum 2014

Inside properties

static void rng_backend_init(Object *obj)
{
 object_property_add_bool(obj, "opened",
 rng_get_opened, rng_set_opened, NULL);
}

static const TypeInfo rng_backend_info = {
 .name = TYPE_RNG_BACKEND,
 .parent = TYPE_OBJECT,
 .instance_size = sizeof(RngBackend),
 .instance_init = rng_backend_init,
 .class_size = sizeof(RngBackendClass),
 .abstract = true,
};

KVM Forum 2014

The two sides of QOM

● Class-based methods/interface polymorphism
➔ Cannot override a method for a single object

● Object-based, dynamic properties
➔ Each instance of a class can have different

properties

● Except for child properties, all properties
are usually handled as if they were static

● So why the difference?

KVM Forum 2014

Uses of dynamic properties

● “Child” properties do not “exist” until the
embedded object is created with object_new()
● MemoryRegions in a device
● e.g. /objects contains /foo after “-object id=foo”

● “Array” properties
● e.g. pci-host/pci-bus/child[12]
● Not array-typed properties!
● Usually children or links

KVM Forum 2014

Dynamic properties vs. introspection

● Property names and types are an object's
schema

● With dynamic properties, the schema is not
known in advance

● “Solution”: instantiate a temporary object,
examine it, delete it

● Implemented for “-device foo,help”

KVM Forum 2014

Towards a QOM schema?

● No QAPI schema introspection in QEMU
● Patches stuck?
● Prerequisite for QOM introspection (QOM property

types can be arbitrary QAPI types)

● Should we expose a QOM schema via QAPI?
● Similar to “-device foo,help”, but for objects
● Dummy object creation, or static properties?

KVM Forum 2014

QOM object lifetime
and the composition tree

KVM Forum 2014

QOM composition tree

/machine

/peripheral

/serial0 -device isa-serial,id=serial0,iobase=0x3f8,...

/unattached

/device[0] (PCI host)

/device[1] (fw_cfg)

...

/objects

/rng0 -device rng-random,...

/backends

KVM Forum 2014

The QOM tree keeps an object alive!

Example:
(qemu) object-add rng-random,id=rng0,filename=/dev/random
(qemu) device-add virtio-rng-pci,rng=rng0

KVM Forum 2014

Birth of a QOM object

● Creation (object_new)
● instance_initialize
● No parent
● Properties initialized to default values

● Preparation
● object_property_add_child
● Values written to properties

KVM Forum 2014

... and here comes the fun part!

● Activation
● qdev_init
● user_creatable_complete

● Deactivation
● object_unparent

● Finalization
● instance_finalize
● g_free

• • • suspence • • •

KVM Forum 2014

object_unparent

● Initiated by guest or management
● Deletes the child<X> property

● Calls the unparent callback
● Makes the object unreachable from the composition

tree
● Drops a reference to the object

● Usually the last reference goes away
● All properties are deleted
● Effect: recursive unparenting of children

KVM Forum 2014

What should the unparent callback do?

● “Ultimately” cause the object to die
● Hide itself from the guest
● Eliminate circular links by propagating unparent

to other objects (e.g. child buses)
● No circular links? Finalization will handle tear down

just fine!

● As soon as the guest finishes using it, the
object will be finalized

KVM Forum 2014

Pattern: references from child to parent

● Children usually oblivious of parent
● If not, how to avoid dangling pointers?

 Parent keeps children alive via composition tree

 Children keep parent alive via reference counting

● How to avoid circular references?
 References to the parent should be weak; only

take a reference to the parent during guest
actions (e.g. MMIO accesses)

● Guest actions cannot happen after unparent
returns → no window for dangling pointers!

KVM Forum 2014

Pattern: references from child to parent

● Separate reference-counting APIs
● memory_region_ref/unref

Guest action, add/remove reference to the QOM
parent (device)

● object_ref/unref
Management action, add/remove reference to the
object itself

● memory_region_ref/unref implicitly keeps
MemoryRegion alive (via child property)

KVM Forum 2014

The future: “Owner” vs. “parent”?

● Example: MemoryRegion needs to know its
parent device
● Currently, children do not need to control the

lifetime of their grandparents
● Is that really the rule?

● Counterexample: implementing PCI
configuration space as MemoryRegions

● /.../pci-device/msix-capability/region

● Config space accesses bypass the capability object
● The MemoryRegion has to keep the device alive

KVM Forum 2014

The future: “Owner” vs. “parent”?

● Right now, MemoryRegion always “refs” the
QOM parent

● In the future, we could add a new API
memory_region_set_owner

So, does it work?

 Yes!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

