- redhat

QOM exegesis and apocalypse

Paolo Bonzini
Red Hat, Inc.
KVM Forum 2014

ex-e-ge-sis /,eksi'jésis/
noun (plural: exegeses)
critical explanation or interpretation of a text

KVM Forum 2014

An IMAGE TEN Production

i'ifi'ilG
DEAD

They keep coming back ina
bloodthirsty lust for
HUMAN FLESH!...

Pits the dead against the living
in a struggle for survival!

ATIO (from, out of) + KaAOTTTW (to hide)

uncovering, disclosure of what's hidden

KVM Forum 2014

Outline

What is the QEMU Object Model?
How do you use QOM?

How could we improve QOM?

KVM Forum 2014

Why QOM?

All device creation, device configuration,
backend creation and backed configuration
done through a single interface

Rigorous support for introspection both of
runtime objects and type capabilities

KVM Forum 2014

Did it work?

KVM Forum 2014

Do pie charts look like Pac Man?

@ @

% of pie charts that % of pie charts
look like Pac Man that do not look
like Pac Man

KVM Forum 2014

The QOM reality

RNG backend
Memory backend
Console

Device

IRQ
MemoryRegion
Machine

KVM Forum 2014

The QOM reality

v New backends use QOM (RNG, memory
device)

v Clear model of object lifetime
v Simple, type-safe QMP Iinterface

x Limited type introspection
x Original intended interface mostly unused

KVM Forum 2014

What happened?

Bad design? No.

QOM integrates well with the rest of QEMU
All problems are fixable

Solution in search of a problem? Somewhat.

Adding new backends happens rarely
Introspection already part of gdev & vmstate

No transition/completion plan? Totally.

KVM Forum 2014

The rest of this talk

v New backends use QOM (RNG, memory
device)

v Clear model of object lifetime
v Simple, type-safe QMP Interface

X Limited type introspection
x Original intended interface mostly unused

KVM Forum 2014

QOM properties
and introspection

QOM In practice

Inheritance (single inheritance + interfaces)
Polymorphic objects (class based)

Polymorphic properties (prototype based)
Object enumeration (“composition tree”)
Generalized factory interface

KVM Forum 2014

QOM concepts: properties

Properties are the external interface to an
object

Different uses of properties:

For construction: set before the object is “started”
For inspection: read after the object is “started”
Very few examples of the second kind :)

Similar to Linux sysfs, with arbitrary QAP
structs instead of bytes

KVM Forum 2014

A step back: the QAPI vision

“QAPI Is a framework to move QEMU
to the next level of feature, function, and
robustness”

KVM Forum 2014

More practically...

Decompose serialization into
Marshaling (composite - primitive type)
Transport (primitive type < representation)

Marshaling done by automatically generated
code

Transport done by hand written “visitors”

QODbject (JSON), QemuOnpts (key/value pairs), string
“Input” vs. “output” visitors

KVM Forum 2014 q

It works!

Fundamental QAPI data types

Scalar JSON types: Integer, string, boolean

Homogeneous arrays (xyzList)

Non-homogeneous JSON arrays never used
Enums (JSON String © C enum)

Records (including discriminated records)

Serialized as JSON dictionaries
Strongly-typed

KVM Forum 2014

QOM property types

Non-object
Example: isa-serial.iobase=0x402
QOM property types are QAPI types

Object
child<X> provides the canonical path to an object
link<X> provides alternative paths

Alilases

Same type as the target, except child<X> = link<X>

KVM Forum 2014 q

QOM properties under the hood

All properties are accessed through visitors:

typedef void (ObjectPropertyAccessor) (Object *obj,
Visitor *v, void *opaque,
const char *name, Error **errp);

typedef void (ObjectPropertyRelease) (0Object *obj,
const char *name, void *opaque);

Similar to Linux sysfs, visitors instead of files
Wrappers for strings and bools

Again, think of Linux sedfile

Still some bollerplate, but not too bad

KVM Forum 2014

Visitors in QOM

QODbject (type-safe!)

{ 'execute': 'object-add', 'arguments': {
‘id': 'my-rng', 'type': 'rng-random',
‘props': { 'filename': '/dev/random' } }

QemuOpts (key/value pair)
gemu -object rng-random,id=my-rng, filename=/dev/random

object add rng-random,id=my-rng, filename=/dev/random

String (scalar-only)

-device
iInfo gtree (“human” mode)

KVM Forum 2014

Creating an object

Object *o = object new(TYPE RNG BACKEND RANDOM) ;
object property set str(o, “filename”, “/dev/random”, NULL);
object property set bool(o, “opened”, “true”, NULL);

object property add child(container get("“/somewhere”),
“my-rng”, o, NULL);
object unref(o);

KVM Forum 2014

Inside properties

static bool rng get opened(Object *obj, Error **errp)

{
RngBackend *s = RNG BACKEND(obj);

return s->opened;

static void rng set opened(Object *obj, bool value,
Error **errp)
{

RngBackend *s = RNG BACKEND(obj);
RngBackendClass *k = RNG BACKEND GET CLASS(s);

if (k->opened) {
k->opened(s, errp)
}

KVM Forum 2014

Inside properties

static void rng backend init(Object *obj)
{
object property add bool(obj, "opened",
rng get opened, rng set opened, NULL);

static const TypeInfo rng backend info = {
.name TYPE RNG BACKEND,
.parent TYPE OBJECT,
.1nstance size = sizeof(RngBackend),
.instance_init = rng_backend init,
.class size sizeof (RngBackendClass),
.abstract true,

KVM Forum 2014

The two sides of QOM

Class-based methods/interface polymorphism
Cannot override a method for a single object
Object-based, dynamic properties

Each instance of a class can have different
properties

Except for child properties, all properties
are usually handled as if they were static

So why the difference?

KVM Forum 2014

Uses of dynamic properties

“Child” properties do not “exist” until the
embedded object Is created with object _new()

MemoryRegions in a device
e.g. /objects contains /foo after “-object id=fo0”

“Array” properties
e.g. pci-host/pci-bus/child[12]
Not array-typed properties!
Usually children or links

KVM Forum 2014

Dynamic properties vs. introspection

Property names and types are an object's
schema

With dynamic properties, the schema is not
known In advance

“Solution”; instantiate a temporary object,
examine it, delete it

Implemented for “-device foo,help”

KVM Forum 2014

Towards a QOM schema?

No QAPI schema introspection in QEMU

Patches stuck?

Prerequisite for QOM introspection (QOM property
types can be arbitrary QAPI types)

Should we expose a QOM schema via QAPI?

Similar to “-device foo,help”, but for objects
Dummy object creation, or static properties?

KVM Forum 2014

QOM object lifetime
and the composition tree

KVM Forum 2014

QOM composition tree

/machine

/peripheral

/[serial0 -device isa-serial,id=serial0,iobase=0x3f8,...
/unattached

/device[0] (PCI host)
/device[1] (fw_cfg)

/objects
/rng0 -device rng-random,...
/backends

KVM Forum 2014

The QOM tree keeps an object alive!

Example:

(gemu) object-add rng-random,id=rng0, filename=/dev/random
(gemu) device-add virtio-rng-pci,rng=rng0

KVM Forum 2014

Birth of a QOM object

Creation (object new)
instance 1initialize
No parent
Properties initialized to default values
Preparation
object property add child
Values written to properties

KVM Forum 2014

.. and here comes the fun part!

Activation

qdev 1init

user creatable complete
Deactivation

object unparent
Finalization ® ® ® suspence © ® ®

instance finalize
g free

KVM Forum 2014

object unparent

Initiated by guest or management

Deletes the child<X> property

Calls the unparent callback

Makes the object unreachable from the composition
tree

Drops a reference to the object
Usually the last reference goes away

All properties are deleted
Effect: recursive unparenting of children

KVM Forum 2014

What should the unparent callback do?

“Ultimately” cause the object to die

Hide itself from the guest

Eliminate circular links by propagating unparent
to other objects (e.g. child buses)

No circular links? Finalization will handle tear down
just fine!

As soon as the guest finishes using It, the
object will be finalized

KVM Forum 2014

Pattern: references from child to parent

Children usually oblivious of
If not, how to avoid dangling

narent
nointers?

Parent keeps children alive via composition tree

Children keep parent alive via reference counting
How to avoid circular references?

References to the parent should be weak; only
take a reference to the parent during guest
actions (e.g. MMIO accesses)

Guest actions cannot happen after unparent
returns — no window for dangling pointers!

KVM Forum 2014 q

Pattern: references from child to parent

Separate reference-counting APIs

memory region ref/unref

Guest action, add/remove reference to the QOM
parent (device)

object ref/unref

Management action, add/remove reference to the
object itself

memory region ref/unref implicitly keeps
MemoryRegion alive (via child property)

KVM Forum 2014 q

The future: “Owner” vs. “parent”?

Example: MemoryRegion needs to know its
parent device

Currently, children do not need to control the
lifetime of their grandparents

Is that really the rule?

Counterexample: implementing PCI
configuration space as MemoryRegions

/.../pci-device/msix-capability/region
Config space accesses bypass the capability object
The MemoryRegion has to keep the device alive

KVM Forum 2014 q

The future: “Owner” vs. “parent”?

Right now, MemoryRegion always “refs” the
QOM parent

In the future, we could add a new API
memory region set owner

KVM Forum 2014

So, does it work?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

