
KVM Security
Improvements

Andrew Honig
KVM Forum 2014

Motivation

● Tech Lead on Cloud Security for Google
○ Google Compute Engine - lots of untrusted users

running whatever they want inside VMs on Google
infrastructure.

○ VMs are all on KVM
(https://cloud.google.com/compute/docs/faq)

● 9 CVEs in KVM (2 VM escapes)
● 6 CVEs in VMware (3 VM escapes)

KVM Vulnerability Types (non exhaustive list)

1. Guest Execution Escape
2. Guest reads of other guest data
3. Guest DoS of Host
4. Ring3-Ring0 privilege escalation (host-host

or guest-guest)
5. Ring 3 DoS (host or guest)

KVM Vulnerability Types (non exhaustive list)

1. Guest Execution Escape
2. Guest reads of other guest data
3. Guest DoS of Host
4. Ring3-Ring0 privilege escalation (host-host

or guest-guest)
5. Ring 3 DoS (host or guest)

Security Strategy

● Code review
● Security testing/fuzzing
● Attack Surface Reduction
● x86 only focus

CVE-2013-1796: Time MSR

● Out of bounds write to an atomic page
shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);

memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,

 sizeof(vcpu->hv_clock));

● KVM checks starting offset of request not the
entire length.

● Guest causes 30 byte write past end of
page.

CVE-2013-1798: IOAPIC

● Nearly arbitrary host memory read
 u32 redir_index = (ioapic->ioregsel - 0x10) >> 1;

u64 redir_content;
ASSERT(redir_index < IOAPIC_NUM_PINS);

redir_content = ioapic->redirtbl[redir_index].bits;

● Code uses ASSERT to verify valid index
● Assert compiles out in non-debug builds
● Guest reads arbitrary host memory

CVE-2014-0049: Instruction emulator
● Improper emulation of pusha
● Occurs when guest does pusha and stack

starts in non-existent or mmio memory but
finished in regular ram

● Allows guest to overwrite emulation data
structures and leads to crash.

● VM Escape confirmed possible (although a
bit racy)

Attack Surface Reduction

Moving attack surfaces to userspace
VMM
● Vulnerability impact is greatly reduced

○ ASLR, stack canaries, AppArmor and other
mitigations more common

○ VM escapes lead to userspace access only
○ DoS only affects the process of the VM, not others

● Very early in experimentation, comments,
corrections, and better ideas are most
welcome.

Approach
● Opt-in ways to move more functionality into userspace

plus new interfaces to improve performance
● Start with all possible functionality in userspace and

only cherry-pick what’s needed for performance
● Goal: >50% attack surface reduction with <.1% perf

impact on macro benchmarks for modern guests on
modern hardware.

● Attack surface metric:
○ Lines of code that process guest input
○ # pages of Intel SDM manual emulated

Current Options

Disk, Network,
Other Devices

Userspace

PIC APIC IOAPIC
KVM

Kernel

Hardware/
Guest

Virtual APIC (HW supported)

Fast Approach Slower, Safer Approach
Disk, Network,
Other Devices

PIC APIC IOAPIC

KVM

No HW support, VMexit for everything

x86 x86

What we’re building

Userspace

Kernel

Hardware / Guest
Virtual APIC (HW supported)

Fast / Safe Approach
Disk, Network,
Other Devices

PIC APIC IOAPIC

KVM Very limited
APIC features

x86

What must be in kernel?

● EOIs, TPR adjustments, and Self-IPIs
definitely need to be in the kernel. Non self-
IPIs, maybe.

● IOAPIC, PIC, and PIT are not perf critical.
● Emulator usually not perf critical.
● Some MSRs must stay in the kernel.

Experimental new ioctls/interfaces

● KVM_CREATE_IRQ_CHIP_LITE
○ Allows access to APIC page from userspace, kernel

only enables apicv features
○ Kernel may need to support non-self IPIs, but via

x2apic only
● KVM_SET_EOI_EXIT_BITMAP
● KVM_SET_EXIT_ON_EMULATION
● KVM_SET_MSR_EXIT_BITMAP
● Expanded kvm_run structure

Status

● Done some experimenting with
KVM_CREATE_IRQ_CHIP_LITE and
KVM_SET_MSR_EXIT_BITMAP with
promising results

● Other ioctls in progress

Questions, Comments???

