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Motivation

● Tech Lead on Cloud Security for Google
○ Google Compute Engine - lots of untrusted users 

running whatever they want inside VMs on Google 
infrastructure.

○ VMs are all on KVM
(https://cloud.google.com/compute/docs/faq)

● 9 CVEs in KVM (2 VM escapes)
● 6 CVEs in VMware (3 VM escapes)



KVM Vulnerability Types (non exhaustive list)

1. Guest Execution Escape
2. Guest reads of other guest data
3. Guest DoS of Host
4. Ring3-Ring0 privilege escalation (host-host 

or guest-guest)
5. Ring 3 DoS (host or guest)
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Security Strategy

● Code review
● Security testing/fuzzing
● Attack Surface Reduction
● x86 only focus



CVE-2013-1796: Time MSR

● Out of bounds write to an atomic page
shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);

memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,

      sizeof(vcpu->hv_clock));

● KVM checks starting offset of request not the 
entire length.

● Guest causes 30 byte write past end of 
page.



CVE-2013-1798: IOAPIC

● Nearly arbitrary host memory read
    u32 redir_index = (ioapic->ioregsel - 0x10) >> 1;

u64 redir_content;
ASSERT(redir_index < IOAPIC_NUM_PINS);

redir_content = ioapic->redirtbl[redir_index].bits;

● Code uses ASSERT to verify valid index
● Assert compiles out in non-debug builds
● Guest reads arbitrary host memory



CVE-2014-0049: Instruction emulator
● Improper emulation of pusha
● Occurs when guest does pusha and stack 

starts in non-existent or mmio memory but 
finished in regular ram

● Allows guest to overwrite emulation data 
structures and leads to crash.

● VM Escape confirmed possible (although a 
bit racy)



Attack Surface Reduction



Moving attack surfaces to userspace 
VMM
● Vulnerability impact is greatly reduced

○ ASLR, stack canaries, AppArmor and other 
mitigations more common

○ VM escapes lead to userspace access only
○ DoS only affects the process of the VM, not others

● Very early in experimentation, comments, 
corrections, and better ideas are most 
welcome.



Approach
● Opt-in ways to move more functionality into userspace 

plus new interfaces to improve performance
● Start with all possible functionality in userspace and 

only cherry-pick what’s needed for performance
● Goal: >50% attack surface reduction with <.1% perf 

impact on macro benchmarks for modern guests on 
modern hardware.

● Attack surface metric:
○ Lines of code that process guest input
○ # pages of Intel SDM manual emulated
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What we’re building
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What must be in kernel?

● EOIs, TPR adjustments, and Self-IPIs 
definitely need to be in the kernel.  Non self-
IPIs, maybe.

● IOAPIC, PIC, and PIT are not perf critical.
● Emulator usually not perf critical.
● Some MSRs must stay in the kernel.



Experimental new ioctls/interfaces

● KVM_CREATE_IRQ_CHIP_LITE
○ Allows access to APIC page from userspace, kernel 

only enables apicv features
○ Kernel may need to support non-self IPIs, but via 

x2apic only
● KVM_SET_EOI_EXIT_BITMAP
● KVM_SET_EXIT_ON_EMULATION
● KVM_SET_MSR_EXIT_BITMAP
● Expanded kvm_run structure



Status

● Done some experimenting with 
KVM_CREATE_IRQ_CHIP_LITE and 
KVM_SET_MSR_EXIT_BITMAP with 
promising results

● Other ioctls in progress



Questions, Comments???


