
Virtio-blk Multi-queue Conversion
and QEMU Optimization

Ming Lei, Canonical Ltd.
KVM Forum 2014

 2 Ming Lei

Virtio-blk Linux driver evolution
● Traditional request based(V2.6.24 ~ V3.12)

- support I/O scheduler for merging I/O

- single coarse lock for protecting request_queue

● BIO based(V3.7 ~ V3.12)[1]
- no coarse request queue lock in I/O path

- don't support I/O scheduler/merge, and not help slow device

- generate more requests to host, and more Vmexit

● Block multi-queue : single dispatch queue(V3.13 ~ V3.16)
- request based, but without coarse lock for protecting request queue

- still support I/O merge in software staging queue

- single virtqueue means single vq lock is needed in both submit and complete path

● Block multi-queue : multi dispatch queue(V3.17 ~)
- with all advantage of block multi-queue

- use multi virtqueue as dispatch queues for improving scalability and throughput

 3 Ming Lei

Linux Block multi-queue[2]

● Introduced for support high IOPS SSD storage

● Remove coarse request queue lock

● Two level queues

 - per-cpu software queue

 staging queue

 schedule / IO account / merge / tagging

 - dispatch queue(hardware queue)

 submit request to hardware

 need hardware support(each queue has its irq, hw queue,...)

 - N:M mapping between SW queue and HW queue

● Pre-allocated request and driver specific data

● Merged to v3.13

 4 Ming Lei

Linux Block multi-queue[2]

 5 Ming Lei

Linux Block multi-queue
● merged blk-mq drivers up to v3.17-rc5

Null_blk

Virtio_blk

SCSI middle layer(need to enable mq via module parameter)

mtip32xx

● In review

Loop

NVME

Xen, blkfront

 6 Ming Lei

Virtio-blk: Linux multi-queue support
● Linux v3.13

- single hardware / dispatch queue

- improve throughput on quick devices

- don't need hypervisor(QEMU) change

- single virtqueue lock is required in both I/O submit and complete path

 scalability can't be good

 single virtqueue may not be enough for very quick devices

 (such as, QEMU's I/O thread may be in starvation state)

● Linux v3.17-rc1
- multi dispatch/hardware queue patches merged

(it is natural to map blk-mq's dispatch queue to virtqueue)

- no bottleneck from VM any more

- need hypervisor(QEMU)'s support for the feature:

+#define VIRTIO_BLK_F_MQ 12 /* support more than one vq */

 7 Ming Lei

QEMU: optimization
● QEMU 2.0

- simple multi virtqueue conversion gets very good throughput

 https://lkml.org/lkml/2014/6/25/909

 https://lkml.org/lkml/2014/6/26/125

● After commit 580b6b2aa2(dataplane: use the QEMU block

layer for I/O)
- throughput becomes not good even with multi virtqueue conversion

- then I started the investigation

● investigation from QEMU virtio-blk dataplane I/O model
 - single I/O thread, compute bound type for high IOPS device

 - CPU usage per request

 - linux AIO

https://lkml.org/lkml/2014/6/25/909
https://lkml.org/lkml/2014/6/26/125

 8 Ming Lei

QEMU: optimization
● Benching environment

- VM: Linux kernel 3.17-rc5 / quad core / 8GB RAM

- virtio-blk(dataplane) device backend: null_blk

 – null_blk feature is very similar with SSD

 – not depend on specific block device

- QEMU 2.2-dev master: patches against commit 30eaca3acdf17

- host:

 Ubuntu trusty

 Intel Xeon 2.13GHz(2 sockets, 8 physical cores(16 threads)) / 24G RAM

- FIO:

 numjobs = 2 for single virtqueue, and numjobs = 4 for dual virt queues
 ioengine=libaio

 direct=1

 iodepth=64

 group_reporting=1

 9 Ming Lei

QEMU: I/O batch submission
● What is I/O batch submission

- handle more requests in one single system call(io_submit), so calling number of

the syscall of io_submit can be decrease a lot

- be helpful for kernel to merge / batch process since per-task IO plug is held during

handling all I/O from 'iocbs'

● Linux-AIO interface[3]
int io_submit(io_context_t ctx, long nr, struct iocb *iocbs[]);

The io_submit function can be used to enqueue an arbitrary number of read and write
requests at one time. The requests can all be meant for the same file, all for different

files or every solution in between.

● Used in virtio-blk dataplane from beginning
- looks no one noticed its power, and just thought it is a natural way to do that

- LKVM doesn't take it, and big difference was observed when I compared these two

● removed in commit 580b6b2aa2(dataplane: use the QEMU block

layer for I/O)

 10 Ming Lei

QEMU: I/O batch submission
● abstracting with generic interfaces:

 - bdrv_io_plug() / bdrv_io_unplug()

 - merged in dd67c1d7e75151(dataplane: submit I/O as a batch)

● Wider usage
- can be used for other block devices in case of 'aio=native', either dataplane or not

- support to submit I/O from more than one files(typical use case: multi-lun SCSI)

● Performance improvement
- single queue, with bypass coroutine optimization enabled

bench Without I/O
batch

With I/O batch improvement

randread 111K 171K 54%

randwrite 115K 162K 40%

read 109K 172K 57%

write 152K 157K 3%

 11 Ming Lei

QEMU: I/O batch submission
● Randread benchmark(use simple trace)

● Write benchmark(use simple trace)
- multi-write makes the difference compared with other three bench

Without I/O batch With I/O batch improvement

Average request number
per I/O submission

1 26.58

Average request number
handled in one time(process_notify)

50.92 27.21

Average time for submitting one
request by QEMU

6.539us 4.986us 23%

Without I/O batch With I/O batch improvement

Average request number
Per io submission

1 3.52

Average merged request number
by QEMU block multi-write

14.19 3.50

Average request number
Handled in one time(process_notify)

52.84 14.79

Average time for submitting one
request by QEMU

4.338us 3.97us -8%

 12 Ming Lei

QEMU: bypass coroutine
● Coroutine isn't cheap for high IOPS device

- coroutine direct cost(not mention dcache miss caused by switching stack)

$./tests/test-coroutine -m perf --debug-log

/perf/cost: {*LOG(message):{Run operation 40000000 iterations 12.965847 s, 3085K

operations/s, 324ns per coroutine}:LOG*}

- example

100K IOPS: throughput may decrease 3.2%

300K IOPS: throughput may decrease 9.6%

500K IOPS: throughput may decrease 16%

● bypass coroutine for linux-aio
- it is reasonable since QEMU 2.0 didn't use that virtio-blk dataplane

- linux-aio with O_DIRECT won't block most of times, so it is OK for dataplane

 13 Ming Lei

QEMU: bypass coroutine
● Throughput improvement with bypassing coroutine

- single queue, with I/O batch submission enabled

● Why does sequential write become slower?
- QEMU block's multi write: more requests merged if it becomes a bit slower?

bench Without bypass
coroutine

With bypass
coroutine

improvement

randread 114K 171K 50%

randwrite 111K 162K 45%

read 108K 172K 59%

write 175K 157K -10%

Without bypass
coroutine

With bypass
coroutine

improvement

Average merged request number 4.039 3.50
Average request number
handled in one time(process_notify)

20.17 14.79

Average time for submitting one
request by QEMU

3.759us 3.97us -5%

 14 Ming Lei

QEMU: perf stat on bypass coroutine
● without bypass cocoutine

- single-vq, IOPS 96K, 155.019584628 seconds time elapsed

 65,449,606,848 L1-dcache-loads [39.77%]

 2,087,494,534 L1-dcache-load-misses # 3.19% of all L1-dcache hits [39.72%]

 231,736,388,638 cpu-cycles [39.95%]

 222,828,102,544 instructions # 0.96 insns per cycle [49.80%]

 44,117,817,799 branch-instructions [49.93%]

 716,777,979 branch-misses # 1.62% of all branches [49.99%]

● with bypass coroutine
- single-vq, IOPS 147K, 153.717004314 seconds time elapsed

 80,608,083,902 L1-dcache-loads [40.12%]

 1,955,370,293 L1-dcache-load-misses # 2.43% of all L1-dcache hits [39.96%]

 292,247,715,774 cpu-cycles [40.01%]

 276,707,625,913 instructions # 0.95 insns per cycle [50.06%]

 53,657,048,721 branch-instructions [49.92%]

 681,296,161 branch-misses # 1.27% of all branches [49.92%]

 15 Ming Lei

QEMU: 'perf stat' on bypass coroutine
● without bypass coroutine

- quad-vqs, IOPS 130K, 152.461739616 seconds time elapsed

 84,530,958,503 L1-dcache-loads [40.26%]

 2,654,266,200 L1-dcache-load-misses # 3.14% of all L1-dcache hits [40.29%]

 290,572,301,418 cpu-cycles [40.19%]

 290,424,820,982 instructions # 1.00 insns per cycle [50.13%]

 58,099,370,492 branch-instructions [50.05%]

 924,204,540 branch-misses # 1.59% of all branches [49.94%]

● with bypass coroutine
- quad-vqs, IOPS 173K, 152.004454306 seconds time elapsed

 87,074,630,884 L1-dcache-loads [40.08%]

 2,034,388,767 L1-dcache-load-misses # 2.34% of all L1-dcache hits [40.13%]

 280,337,907,649 cpu-cycles [39.98%]

 301,037,129,202 instructions # 1.07 insns per cycle [49.91%]

 58,909,482,717 branch-instructions [49.93%]

 682,183,716 branch-misses # 1.16% of all branches [49.98%]

 16 Ming Lei

QEMU: multi virtqueue support
● Which cases are suitable for enabling multi virtqueue

- lots of concurrent I/O requirement from application

- can't get satisfied throughput with single virtqueue, for high IOPS devices

● How to use multi virtqueue
- 'num_queues' parameter

- support both dataplane and non-dataplane

● Handle all requests from multi virtqueues in one I/O thread
- may increase request count per system call

- try to make I/O thread at full loading

● In the future, more I/O threads may be introduced for handling

requests from multi virtqueues

 17 Ming Lei

QEMU: multi virtqueue support
● scalability improvement

- single virtqueue: num_queues = 1

bench numjobs=2 numjobs=4 improvement

randread 171K 118K -30%

randwrite 162K 114K -29%

read 172K 120K -30%

write 157K 158K +0.6%

bench numjobs=2 numjobs=4 improvement
randread 168K 174K +3%

randwrite 157K 163K +3%

read 162K 174K +7%

write 161K 260K +61%

- dual virtqueue: num_queues = 2

 18 Ming Lei

QEMU: multi virtqueue support
● Throughput improvement

- no obvious improvement for non-write bench

- null blk throughput(randread, single job) on host is ~250K

- CPU utilization of IO thread is close to 100% for non-write bench

- write throughput increased a lot because IO thread takes fewer CPU to submit I/O

when multi-write merged lots of sequential writes

● Multi virtqueue can help two situations
- I/O handling is too slow, so requests can be exhausted easily from single queue, then I/O

thread may become blocked, for example, multi queue can improve throughput ~30%

if bypass coroutine is disabled

- I/O handling is too quick, requests from VM(single vq) can't catch up with QEMU's I/O

processing, and multi queue can help this case too, for example, QEMU 2.0 can get

much improvement with multi virtqueue

 19 Ming Lei

QEMU: virtio-blk multi queue status

● Git tree:

- git://kernel.ubuntu.com/ming/qemu.git v2.1.0-mq.4

● Linux aio fix patches

- pending

● Fast path patch for bypassing coroutine from Paolo Bonzini

- not ready for merge

● Multi virtqueue conversion

- pending

- depends on linux-aio fix patches

 20 Ming Lei

QEMU: related block optimization
● Next step work

- Push these patches

- Apply bdrv_io_plug() / bdrv_io_unplug() to other block devices

- Support to submit I/O in batch from multiple files for SCSI devices

- Virtio-SCSI block mq support

 virtio-scsi dataplane

 linux virtio-scsi support multi dispatch queue

 21 Ming Lei

References:

[1] Asias He, Virtio-blk Performance Improvement, KVM forum

2012

[2] Matias Bjorling, Jens Axboe, David Nellans, Philippe Bonnet,

Linux Block I/O: Introducing Multi-queue SSD Access on Multi-core

Systems

[3] man 3 io_submit

Questions please
Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

