

Backing Chain Management

 in libvirt and qemu

Eric Blake <eblake@redhat.com>
KVM Forum, August 2015

In this presentation

• How does the qcow2 format track point-in-time snapshots

• What are the qemu building blocks for managing backing chains

• How are these building blocks used together in libvirt

2

Part I

Understanding qcow2

qcow2 history

• qcow format (QEMU Copy On Write) documented in 2006

• qcow2 created in 2008, adding things like:

• Internal snapshots with reference counting
• Hacky addition in 2009 to add header extensions

• Backing file format, to avoid format probing CVEs
• qcow2v3 created in April 2012, adding things like:

• Feature bits (extension is easier!)
• Efficient zero cluster management

4

Let's look under the hood

• Create a new file

• Write some guest data

• Create an internal snapshot

• Write more guest data

• Create an external snapshot

• Write even more guest data

5

Create a new file
qemu-img create -f qcow2 base.qcow2 100M

6

Create a new file

6

Create a new file

All images have a refcount table, describing the usage of each host cluster

All images have a 2-level refcount table,
 describing the usage of each host cluster

6

Create a new file

All images have an L1/L2 table,
 describing the mapping of each guest cluster

(but with no data mapped, L2 is omitted)

6

Write some guest data
qemu-io -c “write $((99*1024*1024-512)) $((65*1024))” base.qcow2

7

Write some guest data

7

Write some guest data

Refcount table tracks additional clusters

7

Write some guest data

L2 table tracks guest data in
aligned clusters

7

Create an internal snapshot
qemu-img snapshot -c one base.qcow2

8

Create an internal snapshot

8

Create an internal snapshot

Snapshot table added, which
points to copied L1 table

8

Create an internal snapshot

L2 and data refcounts are
updated to be shared

8

Write more guest data
qemu-io -c “write $((99*1024*1024-64*1024+512)) 512” base.qcow2

9

Write more guest data

9

Write more guest data

Writing a single sector to a shared cluster
requires copying the entire cluster

9

Write more guest data

The L2 table also has to be cloned

9

Write more guest data

Guest view now depends on which L1
table is used in the header

9

Write more guest data

Guest view now depends on which L1
table is used in the header

9

Create an external snapshot
qemu-img create -f qcow2 -o
backing_file=base.qcow2,backing_fmt=qcow2 wrap.qcow2

10

Create an external snapshot

10

Create an external snapshot

A blank qcow2 with a backing file sees the same
data as the active layer of the backing file

10

Write even more guest data
qemu-io -c “write -P 0xff $((99*1024*1024-63*1024))
 $((64*1024))” wrap.qcow2

11

Write even more guest data

11

Write even more guest data

As with internal snapshots, writing one sector
causes the entire cluster to be copied. This

happens regardless of refcount in base image

11

Write even more guest data

Reading a cluster finds the first file from the top of
the chain that contains the cluster

11

Write even more guest data

Reading a cluster finds the first file from the top of
the chain that contains the cluster

11

Part II

Backing Chains

Internal Snapshots

Pros

• Single file contains
everything, optionally
including live VM state

• Reverting is easy and
supported by libvirt

• No I/O penalties to active
state

Cons

• Cannot read snapshot while
image is in use by guest;
does not allow live backups

• QMP internal snapshot
management is inefficient

• qcow2 file size can greatly
exceed guest size

• No defragmentation

13

External Snapshots

Pros

• Live backups and storage
migration are easy

• Optimized QMP performance

• Building blocks can be
combined in a number of
useful patterns

• Great for cluster provisioning
from a common base install

Cons

• Deleting snapshots is trickier,
libvirt currently delegates to
manual qemu-img usage

• Multiple files to track

• I/O overhead in long chains

14

Backing Chain diagrams

• Notation “A ← B” for “image A backs image B”

• More recent wrappers listed on the right (also called top)

• The chain we created earlier is represented as:

• base.qcow2 ← wrap.qcow2
• 'qemu-img map' can show where clusters live

$ qemu-img map wrap.qcow2
Offset Length Mapped to File
0x62f0000 0x20000 0x50000 wrap.qcow2
0x6300000 0x10000 0x70000 base.qcow2

15

Points in time vs. file names

• Given the chain “A ← B ← C”, we have 2 points in time and an
active layer

• Point 1: Guest state when B was created, contained in file A

• Point 2: Guest state when C was created, contained in A+B

• Active layer: Current guest state, contained in A+B+C

• Be careful with naming choices:

• Naming a file after the time it is created is misleading – the
guest data for that point in time is NOT contained in that file

• Rather, think of files as a delta from the backing file

16

Backing files must not change

• Qcow2 block operations are NOT a substitute for overlayfs

• Observe what happens if a common backing file is modified

• Data seen by dependent images is now different from any state
ever possibly observed by the guest, also different from base

17

Backing files must not change

• Qcow2 block operations are NOT a substitute for overlayfs

• Observe what happens if a common backing file is modified

• Data seen by dependent images is now different from any state
ever possibly observed by the guest, also different from base

17

Block-stream primitive (“pull”)

•Starting with “A ← B ← C”, copy/move clusters towards the top

•Additionally, rewrite backing data to drop now-redundant files

•qemu 2.4 limited to top image (A+B into C, or B into C), but
qemu 2.5 will add intermediate streaming (A into B)

•Always safe, restartable

18

Block-stream primitive (“pull”)

•Starting with “A ← B ← C”, copy/move clusters towards the top

•Additionally, rewrite backing data to drop now-redundant files

•qemu 2.4 limited to top image (A+B into C, or B into C), but
qemu 2.5 will add intermediate streaming (A into B)

•Always safe, restartable

18

Block-stream primitive (“pull”)

•Starting with “A ← B ← C”, copy/move clusters towards the top

•Additionally, rewrite backing data to drop now-redundant files

•qemu 2.4 limited to top image (A+B into C, or B into C), but
qemu 2.5 will add intermediate streaming (A into B)

•Always safe, restartable

18

Block-stream primitive (“pull”)

•Starting with “A ← B ← C”, copy/move clusters towards the top

•Additionally, rewrite backing data to drop now-redundant files

•qemu 2.4 limited to top image (A+B into C, or B into C), but
qemu 2.5 will add intermediate streaming (A into B)

•Always safe, restartable

18

Block-stream primitive (“pull”)

•Starting with “A ← B ← C”, copy/move clusters towards the top

•Additionally, rewrite backing data to drop now-redundant files

•qemu 2.4 limited to top image (A+B into C, or B into C), but
qemu 2.5 will add intermediate streaming (A into B)

•Always safe, restartable

18

Block-stream primitive (“pull”)

•Starting with “A ← B ← C”, copy/move clusters towards the top

•Additionally, rewrite backing data to drop now-redundant files

•qemu 2.4 limited to top image (A+B into C, or B into C), but
qemu 2.5 will add intermediate streaming (A into B)

•Always safe, restartable

18

Block-stream primitive (“pull”)

•Starting with “A ← B ← C”, copy/move clusters towards the top

•Additionally, rewrite backing data to drop now-redundant files

•qemu 2.4 limited to top image (A+B into C, or B into C), but
qemu 2.5 will add intermediate streaming (A into B)

•Always safe, restartable

18

Block-commit primitive (“commit”)

• Starting with “A ← B ← C”, copy/move clusters away from top

• Additionally, rewrite backing data to drop now-redundant files

• qemu 1.3 supported intermediate commit (B into A), qemu 2.0
added active commit (C into B, C+B into A)

• Restartable, but remember

caveat about editing a

shared base file

19

Block-commit primitive (“commit”)

• Starting with “A ← B ← C”, copy/move clusters away from top

• Additionally, rewrite backing data to drop now-redundant files

• qemu 1.3 supported intermediate commit (B into A), qemu 2.0
added active commit (C into B, C+B into A)

• Restartable, but remember

caveat about editing a

shared base file

19

Block-commit primitive (“commit”)

• Starting with “A ← B ← C”, copy/move clusters away from top

• Additionally, rewrite backing data to drop now-redundant files

• qemu 1.3 supported intermediate commit (B into A), qemu 2.0
added active commit (C into B, C+B into A)

• Restartable, but remember

caveat about editing a

shared base file

19

Block-commit primitive (“commit”)

• Starting with “A ← B ← C”, copy/move clusters away from top

• Additionally, rewrite backing data to drop now-redundant files

• qemu 1.3 supported intermediate commit (B into A), qemu 2.0
added active commit (C into B, C+B into A)

• Restartable, but remember

caveat about editing a

shared base file

19

Block-commit primitive (“commit”)

• Starting with “A ← B ← C”, copy/move clusters away from top

• Additionally, rewrite backing data to drop now-redundant files

• qemu 1.3 supported intermediate commit (B into A), qemu 2.0
added active commit (C into B, C+B into A)

• Restartable, but remember

caveat about editing a

shared base file

19

Block-commit primitive (“commit”)

• Starting with “A ← B ← C”, copy/move clusters away from top

• Additionally, rewrite backing data to drop now-redundant files

• qemu 1.3 supported intermediate commit (B into A), qemu 2.0
added active commit (C into B, C+B into A)

• Restartable, but remember

caveat about editing a

shared base file

19

Block-commit primitive (“commit”)

• Starting with “A ← B ← C”, copy/move clusters away from top

• Additionally, rewrite backing data to drop now-redundant files

• qemu 1.3 supported intermediate commit (B into A), qemu 2.0
added active commit (C into B, C+B into A)

• Restartable, but remember

caveat about editing a

shared base file

19

Block-commit primitive (“commit”)

• Future qemu may add additional commit mode that combines pull
and commit, so that files removed from chain are still consistent

• Another future change under consideration would allow keeping
the active image in chain, but clearing out clusters that are now
redundant with backing file

20

Block-commit primitive (“commit”)

• Future qemu may add additional commit mode that combines pull
and commit, so that files removed from chain are still consistent

• Another future change under consideration would allow keeping
the active image in chain, but clearing out clusters that are now
redundant with backing file

20

Which operation is more efficient?

• Consider removing 2nd point in time from chain “A ← B ← C ← D”

• Can be done by pulling B into C

• Creates “A ← C' ← D”
• Can be done by committing C into B

• Creates “A ← B' ← D”
• But one direction may have to copy more clusters than the other

• Efficiency also impacted when doing multi-step operations
(deleting 2+ points in time, to shorten chain by multiple files)

21

Drive-mirror primitive (“copy”)

• Copy all or part of one chain to another destination

• Destination can be pre-created, as long as the data seen by the
guest is identical between source and destination when starting

• Empty qcow2 file backed by different file but same contents
• Point in time is consistent when

copy is manually ended

• Aborting early requires full

restart (until persistent bitmaps)

22

Drive-mirror primitive (“copy”)

• Copy all or part of one chain to another destination

• Destination can be pre-created, as long as the data seen by the
guest is identical between source and destination when starting

• Empty qcow2 file backed by different file but same contents
• Point in time is consistent when

copy is manually ended

• Aborting early requires full

restart (until persistent bitmaps)

22

Drive-mirror primitive (“copy”)

• Copy all or part of one chain to another destination

• Destination can be pre-created, as long as the data seen by the
guest is identical between source and destination when starting

• Empty qcow2 file backed by different file but same contents
• Point in time is consistent when

copy is manually ended

• Aborting early requires full

restart (until persistent bitmaps)

22

Drive-mirror primitive (“copy”)

• Copy all or part of one chain to another destination

• Destination can be pre-created, as long as the data seen by the
guest is identical between source and destination when starting

• Empty qcow2 file backed by different file but same contents
• Point in time is consistent when

copy is manually ended

• Aborting early requires full

restart (until persistent bitmaps)

22

Drive-mirror primitive (“copy”)

• Copy all or part of one chain to another destination

• Destination can be pre-created, as long as the data seen by the
guest is identical between source and destination when starting

• Empty qcow2 file backed by different file but same contents
• Point in time is consistent when

copy is manually ended

• Aborting early requires full

restart (until persistent bitmaps)

22

Drive-mirror primitive (“copy”)

• Copy all or part of one chain to another destination

• Destination can be pre-created, as long as the data seen by the
guest is identical between source and destination when starting

• Empty qcow2 file backed by different file but same contents
• Point in time is consistent when

copy is manually ended

• Aborting early requires full

restart (until persistent bitmaps)

22

Drive-mirror primitive (“copy”)

• Copy all or part of one chain to another destination

• Destination can be pre-created, as long as the data seen by the
guest is identical between source and destination when starting

• Empty qcow2 file backed by different file but same contents
• Point in time is consistent when

copy is manually ended

• Aborting early requires full

restart (until persistent bitmaps)

22

Drive-mirror primitive (“copy”)

• Copy all or part of one chain to another destination

• Destination can be pre-created, as long as the data seen by the
guest is identical between source and destination when starting

• Empty qcow2 file backed by different file but same contents
• Point in time is consistent when

copy is manually ended

• Aborting early requires full

restart (until persistent bitmaps)

22

Drive-backup primitive

• Copy guest state from point in time into destination

• Any guest writes will first flush the old cluster to the destination
before writing the new cluster to the source

• Meanwhile, bitmap tracks what additional clusters still need to be
copied in background

• Similar to drive-mirror, but

with different point in time

23

Drive-backup primitive

• Copy guest state from point in time into destination

• Any guest writes will first flush the old cluster to the destination
before writing the new cluster to the source

• Meanwhile, bitmap tracks what additional clusters still need to be
copied in background

• Similar to drive-mirror, but

with different point in time

23

Drive-backup primitive

• Copy guest state from point in time into destination

• Any guest writes will first flush the old cluster to the destination
before writing the new cluster to the source

• Meanwhile, bitmap tracks what additional clusters still need to be
copied in background

• Similar to drive-mirror, but

with different point in time

23

Drive-backup primitive

• Copy guest state from point in time into destination

• Any guest writes will first flush the old cluster to the destination
before writing the new cluster to the source

• Meanwhile, bitmap tracks what additional clusters still need to be
copied in background

• Similar to drive-mirror, but

with different point in time

23

Incremental backup

• qemu 2.5 will add ability for incremental backup via bitmaps

• User can create bitmaps at any point in guest time; each bitmap
tracks guest cluster changes after that point

• While drive-mirror can only copy at backing chain boundaries, a
bitmap allows extracting all clusters changed since point in time,
capturing incremental state without a source backing chain

• Incremental backups can then be combined in backing chains of
their own to reform full image

24

Part III

Libvirt control

Libvirt representation of backing chain

• virDomainGetXMLDesc() API

•virsh dumpxml guest

• Backing chain represented by
nested children of <disk>

• Currently only for live guests,
but planned for offline guests

• Name a specific chain member
by index (“vda[1]”) or filename
(“/tmp/wrap.qcow2”)

<disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/tmp/wrap2.qcow2'/>
 <backingStore type='file' index='1'>
 <format type='qcow2'/>
 <source file='/tmp/wrap.qcow2'/>
 <backingStore type='file' index='2'>
 <format type='qcow2'/>
 <source file='/tmp/base.qcow2'/>
 <backingStore/>
 </backingStore>
 </backingStore>
 <target dev='vda' bus='virtio'/>
 ...

26

Libvirt representation of backing chain

• virDomainGetXMLDesc() API

•virsh dumpxml guest

• Backing chain represented by
nested children of <disk>

• Currently only for live guests,
but planned for offline guests

• Name a specific chain member
by index (“vda[1]”) or filename
(“/tmp/wrap.qcow2”)

<disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/tmp/wrap2.qcow2'/>
 <backingStore type='file' index='1'>
 <format type='qcow2'/>
 <source file='/tmp/wrap.qcow2'/>
 <backingStore type='file' index='2'>
 <format type='qcow2'/>
 <source file='/tmp/base.qcow2'/>
 <backingStore/>
 </backingStore>
 </backingStore>
 <target dev='vda' bus='virtio'/>
 ...

26

Libvirt representation of backing chain

• virDomainGetXMLDesc() API

•virsh dumpxml guest

• Backing chain represented by
nested children of <disk>

• Currently only for live guests,
but planned for offline guests

• Name a specific chain member
by index (“vda[1]”) or filename
(“/tmp/wrap.qcow2”)

<disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/tmp/wrap2.qcow2'/>
 <backingStore type='file' index='1'>
 <format type='qcow2'/>
 <source file='/tmp/wrap.qcow2'/>
 <backingStore type='file' index='2'>
 <format type='qcow2'/>
 <source file='/tmp/base.qcow2'/>
 <backingStore/>
 </backingStore>
 </backingStore>
 <target dev='vda' bus='virtio'/>
 ...

26

Creating an external snapshot

• virDomainSnapshotCreateXML() API

•virsh snapshot-create domain description.xml
•virsh snapshot-create-as domain --disk-only \
 --diskspec vda,file=/path/to/wrapper.qcow2

• Maps to qemu blockdev-snapshot-sync, also manages offline
chain creation through qemu-img

• Often used with additional flags:

• --no-metadata: cause only side effect of backing chain growth
• --quiesce: freeze guest I/O, but requires guest agent

27

Performing block pull

• virDomainBlockRebase() API

•virsh blockpull domain vda --wait --verbose

• Mapped to qemu block-stream, with current limitation of only
pulling into active layer

• When qemu 2.5 adds intermediate streaming, syntax will be:

•virsh blockpull domain "vda[1]" --base "vda[3]"

28

Performing block commit

• virDomainBlockCommit() API, plus virDomainBlockJobAbort() for
active jobs

•virsh blockcommit domain vda --top "vda[1]"

•virsh blockjob domain vda

•virsh blockcommit domain vda --shallow \

 --pivot --verbose --timeout 60

• May gain additional flags if qemu block-commit adds features

29

Performing block copy

• virDomainBlockCopy()/virDomainBlockJobAbort() APIs

•virsh blockcopy domain vda /path/to/dest --pivot

• Currently requires transient domain

• Plan to relax that with qemu 2.5 persistent bitmap support
• Currently captures point in time at end of job (drive-mirror)

• May later add flag for start of job semantics (drive-backup)
• Plan to add --quiesce flag to job abort, like in snapshot creation,
instead of having to manually use domfsfreeze/domfsthaw

30

Piecing it all together: efficient live backup

• Goal: create (potentially bootable) backup of live guest disk state

/my/base /my/image /my/image.tmp← ←

31

Piecing it all together: efficient live backup

• Goal: create (potentially bootable) backup of live guest disk state
$ virsh snapshot-create-as domain tmp \
 --no-metadata --disk-only --quiesce

/my/base /my/image /my/image.tmp← ←

31

Piecing it all together: efficient live backup

• Goal: create (potentially bootable) backup of live guest disk state
$ virsh snapshot-create-as domain tmp \
 --no-metadata --disk-only --quiesce

/my/base /my/image /my/image.tmp← ←

31

Piecing it all together: efficient live backup

• Goal: create (potentially bootable) backup of live guest disk state
$ virsh snapshot-create-as domain tmp \
 --no-metadata --disk-only --quiesce
$ cp --reflink=always /my/image /backup/image

/my/base /my/image /my/image.tmp← ←
/my/base /backup/image←

31

Piecing it all together: efficient live backup

• Goal: create (potentially bootable) backup of live guest disk state
$ virsh snapshot-create-as domain tmp \
 --no-metadata --disk-only --quiesce
$ cp --reflink=always /my/image /backup/image
$ virsh blockcommit domain vda --shallow \
 --pivot --verbose

/my/base /my/image /my/image.tmp← ←
/my/base /backup/image←

31

Piecing it all together: efficient live backup

• Goal: create (potentially bootable) backup of live guest disk state
$ virsh snapshot-create-as domain tmp \
 --no-metadata --disk-only --quiesce
$ cp --reflink=always /my/image /backup/image
$ virsh blockcommit domain vda --shallow \
 --pivot --verbose
$ rm /my/image.tmp

/my/base /my/image /my/image.tmp← ←
/my/base /backup/image←

31

Piecing it all together: efficient live backup

• Goal: create (potentially bootable) backup of live guest disk state

• No guest downtime, and with a fast storage array command, the
delta contained in temporary chain wrapper is small enough for
entire operation to take less than a second

$ virsh snapshot-create-as domain tmp \
 --no-metadata --disk-only --quiesce
$ cp --reflink=always /my/image /backup/image
$ virsh blockcommit domain vda --shallow \
 --pivot --verbose
$ rm /my/image.tmp

31

Piecing it all together: revert to snapshot

• Goal: roll back to disk state in an external snapshot

/my/base /my/experiment←

<disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/my/experiment'/>
...

32

Piecing it all together: revert to snapshot

• Goal: roll back to disk state in an external snapshot
$ virsh destroy domain

/my/base /my/experiment←

<disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/my/experiment'/>
...

32

Piecing it all together: revert to snapshot

• Goal: roll back to disk state in an external snapshot
$ virsh destroy domain
$ virsh edit domain # update <disk> details

/my/base /my/experiment←

<disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/my/base'/>
...

32

Piecing it all together: revert to snapshot

• Goal: roll back to disk state in an external snapshot
$ virsh destroy domain
$ virsh edit domain # update <disk> details
$ rm /my/experiment

/my/base /my/experiment←

<disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/my/base'/>
...

32

Piecing it all together: revert to snapshot

• Goal: roll back to disk state in an external snapshot
$ virsh destroy domain
$ virsh edit domain # update <disk> details
$ rm /my/experiment
$ virsh start domain

/my/base /my/experiment←

<disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/my/base'/>
...

32

Piecing it all together: revert to snapshot

• Goal: roll back to disk state in an external snapshot

• If rest of chain must be kept consistent, use copies or create
additional wrappers with qemu-img to avoid corrupting base

• If rest of chain is not needed, be sure to delete files that are
invalidated after reverting

$ virsh destroy domain
$ virsh edit domain # update <disk> details
$ rm /my/experiment
$ virsh start domain

32

Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage

/nfs/image /nfs/image.tmp←

33

Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage
$ virsh snapshot-create-as domain tmp \
 --no-metadata --disk-only

/nfs/image /nfs/image.tmp←

33

Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage
$ virsh snapshot-create-as domain tmp \
 --no-metadata --disk-only
$ cp /nfs/image /local/image

/nfs/image /nfs/image.tmp←
/local/image /local/wrap←

33

Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage
$ virsh snapshot-create-as domain tmp \
 --no-metadata --disk-only
$ cp /nfs/image /local/image
$ qemu-img create -f qcow2 -b /local/image \
 -F qcow2 /local/wrap

/nfs/image /nfs/image.tmp←
/local/image /local/wrap←

33

Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage
$ virsh snapshot-create-as domain tmp \
 --no-metadata --disk-only
$ cp /nfs/image /local/image
$ qemu-img create -f qcow2 -b /local/image \
 -F qcow2 /local/wrap
$ virsh undefine domain
...

/nfs/image /nfs/image.tmp←
/local/image /local/wrap←

33

Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage
$ virsh blockcopy domain vda /local/wrap \
 --shallow --pivot --verbose --reuse-external

/nfs/image /nfs/image.tmp←
/local/image /local/wrap←

33

Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage
$ virsh blockcopy domain vda /local/wrap \
 --shallow --pivot --verbose --reuse-external
$ virsh dumpxml domain > file.xml
$ virsh define file.xml

/nfs/image /nfs/image.tmp←
/local/image /local/wrap←

33

Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage
$ virsh blockcopy domain vda /local/wrap \
 --shallow --pivot --verbose --reuse-external
$ virsh dumpxml domain > file.xml
$ virsh define file.xml
$ virsh blockcommit domain vda --shallow \
 --pivot --verbose

/nfs/image /nfs/image.tmp←
/local/image /local/wrap←

33

Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage
$ virsh blockcopy domain vda /local/wrap \
 --shallow --pivot --verbose --reuse-external
$ virsh dumpxml domain > file.xml
$ virsh define file.xml
$ virsh blockcommit domain vda --shallow \
 --pivot --verbose
$ rm file.xml /local/wrap /nfs/image.tmp

/nfs/image /nfs/image.tmp←
/local/image /local/wrap←

33

Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage

• The undefine/dumpxml/define steps will drop once libvirt can use
persistent bitmaps to allow copy with non-transient domains

$ virsh blockcopy domain vda /local/wrap \
 --shallow --pivot --verbose --reuse-external
$ virsh dumpxml domain > file.xml
$ virsh define file.xml
$ virsh blockcommit domain vda --shallow \
 --pivot --verbose
$ rm file.xml /local/wrap /nfs/image.tmp

33

Future work

• Libvirt support of offline chain management

• Libvirt support of revert to external snapshot

• Qemu 2.5 additions, and adding libvirt support:

• Intermediate streaming
• Incremental backup
• Use persistent bitmap

• Libvirt support to expose mapping information, or at a minimum
whether pull or commit would move less data

• Patches welcome!

34

 Questions?

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

http://creativecommons.org/licenses/by-sa/3.0/

	Slide 1
	page2 (2)
	Slide 3
	Slide 4
	Slide 5
	page6 (1)
	page6 (2)
	page6 (3)
	page6 (4)
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page9 (5)
	page9 (6)
	page10 (1)
	page10 (2)
	page10 (3)
	page11 (1)
	page11 (2)
	page11 (3)
	page11 (4)
	page11 (5)
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	page20 (1)
	page20 (2)
	page21 (1)
	page21 (2)
	page22 (1)
	page22 (2)
	Slide 46
	page24 (1)
	page24 (2)
	page25 (1)
	page25 (2)
	page26 (1)
	page26 (2)
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	page44 (1)
	page44 (2)
	page44 (3)
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	page49 (1)
	page49 (2)
	page49 (3)
	page49 (4)
	page49 (5)
	page49 (6)
	page49 (7)
	page50 (1)
	page50 (2)
	page50 (3)
	page50 (4)
	page50 (5)
	page50 (6)
	page51 (1)
	page51 (2)
	page51 (3)
	page51 (4)
	page51 (5)
	page52 (1)
	page52 (2)
	page52 (3)
	page52 (4)
	page52 (5)
	Slide 100
	Slide 101

