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In this presentation

• How does the qcow2 format track point-in-time snapshots

• What are the qemu building blocks for managing backing chains

• How are these building blocks used together in libvirt
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Part I

Understanding qcow2



  

qcow2 history

• qcow format (QEMU Copy On Write) documented in 2006

• qcow2 created in 2008, adding things like:

• Internal snapshots with reference counting
• Hacky addition in 2009 to add header extensions

• Backing file format, to avoid format probing CVEs
• qcow2v3 created in April 2012, adding things like:

• Feature bits (extension is easier!)
• Efficient zero cluster management
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Let's look under the hood

• Create a new file

• Write some guest data

• Create an internal snapshot

• Write more guest data

• Create an external snapshot

• Write even more guest data
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Create a new file
qemu-img create -f qcow2 base.qcow2 100M
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Create a new file
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Create a new file

All images have a refcount table, describing the usage of each host cluster

All images have a 2-level refcount table,
 describing the usage of each host cluster
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Create a new file

All images have an L1/L2 table,
 describing the mapping of each guest cluster

(but with no data mapped, L2 is omitted)
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Write some guest data
qemu-io -c “write $((99*1024*1024-512)) $((65*1024))” base.qcow2
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Write some guest data
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Write some guest data

Refcount table tracks additional clusters
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Write some guest data

L2 table tracks guest data in 
aligned clusters
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Create an internal snapshot
qemu-img snapshot -c one base.qcow2
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Create an internal snapshot
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Create an internal snapshot

Snapshot table added, which 
points to copied L1 table
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Create an internal snapshot

L2 and data refcounts are 
updated to be shared
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Write more guest data
qemu-io -c “write $((99*1024*1024-64*1024+512)) 512” base.qcow2
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Write more guest data
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Write more guest data

Writing a single sector to a shared cluster 
requires copying the entire cluster
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Write more guest data

The L2 table also has to be cloned
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Write more guest data

Guest view now depends on which L1 
table is used in the header
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Write more guest data

Guest view now depends on which L1 
table is used in the header
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Create an external snapshot
qemu-img create -f qcow2 -o 
backing_file=base.qcow2,backing_fmt=qcow2 wrap.qcow2
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Create an external snapshot
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Create an external snapshot

A blank qcow2 with a backing file sees the same 
data as the active layer of the backing file
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Write even more guest data
qemu-io -c “write -P 0xff $((99*1024*1024-63*1024))
 $((64*1024))” wrap.qcow2
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Write even more guest data
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Write even more guest data

As with internal snapshots, writing one sector 
causes the entire cluster to be copied. This 

happens regardless of refcount in base image
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Write even more guest data

Reading a cluster finds the first file from the top of 
the chain that contains the cluster
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Write even more guest data

Reading a cluster finds the first file from the top of 
the chain that contains the cluster
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Part II

Backing Chains



  

Internal Snapshots

Pros

• Single file contains 
everything, optionally 
including live VM state

• Reverting is easy and 
supported by libvirt

• No I/O penalties to active 
state

Cons

• Cannot read snapshot while 
image is in use by guest; 
does not allow live backups

• QMP internal snapshot 
management is inefficient

• qcow2 file size can greatly 
exceed guest size

• No defragmentation
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External Snapshots

Pros

• Live backups and storage 
migration are easy

• Optimized QMP performance

• Building blocks can be 
combined in a number of 
useful patterns

• Great for cluster provisioning 
from a common base install

Cons

• Deleting snapshots is trickier, 
libvirt currently delegates to 
manual qemu-img usage

• Multiple files to track

• I/O overhead in long chains
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Backing Chain diagrams

• Notation “A ← B” for “image A backs image B”

• More recent wrappers listed on the right (also called top)

• The chain we created earlier is represented as:

• base.qcow2 ← wrap.qcow2
• 'qemu-img map' can show where clusters live

$ qemu-img map wrap.qcow2
Offset    Length  Mapped to File
0x62f0000 0x20000 0x50000   wrap.qcow2
0x6300000 0x10000 0x70000   base.qcow2
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Points in time vs. file names

• Given the chain “A ← B ← C”, we have 2 points in time and an 
active layer

• Point 1: Guest state when B was created, contained in file A

• Point 2: Guest state when C was created, contained in A+B

• Active layer: Current guest state, contained in A+B+C

• Be careful with naming choices:

• Naming a file after the time it is created is misleading – the 
guest data for that point in time is NOT contained in that file

• Rather, think of files as a delta from the backing file
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Backing files must not change

• Qcow2 block operations are NOT a substitute for overlayfs

• Observe what happens if a common backing file is modified

• Data seen by dependent images is now different from any state 
ever possibly observed by the guest, also different from base
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Block-stream primitive (“pull”)

•Starting with “A ← B ← C”, copy/move clusters towards the top

•Additionally, rewrite backing data to drop now-redundant files

•qemu 2.4 limited to top image (A+B into C, or B into C), but 
qemu 2.5 will add intermediate streaming (A into B)

•Always safe, restartable
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Block-commit primitive (“commit”)

• Starting with “A ← B ← C”, copy/move clusters away from top

• Additionally, rewrite backing data to drop now-redundant files

• qemu 1.3 supported intermediate commit (B into A), qemu 2.0 
added active commit (C into B, C+B into A)

• Restartable, but remember

caveat about editing a

shared base file
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Block-commit primitive (“commit”)

• Future qemu may add additional commit mode that combines pull 
and commit, so that files removed from chain are still consistent

• Another future change under consideration would allow keeping 
the active image in chain, but clearing out clusters that are now 
redundant with backing file
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Which operation is more efficient?

• Consider removing 2nd point in time from chain “A ← B ← C ← D”

• Can be done by pulling B into C

• Creates “A ← C' ← D”
• Can be done by committing C into B

• Creates “A ← B' ← D”
• But one direction may have to copy more clusters than the other

• Efficiency also impacted when doing multi-step operations 
(deleting 2+ points in time, to shorten chain by multiple files)
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Drive-mirror primitive (“copy”)

• Copy all or part of one chain to another destination

• Destination can be pre-created, as long as the data seen by the 
guest is identical between source and destination when starting

• Empty qcow2 file backed by different file but same contents
• Point in time is consistent when

copy is manually ended

• Aborting early requires full

restart (until persistent bitmaps)
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Drive-backup primitive

• Copy guest state from point in time into destination

• Any guest writes will first flush the old cluster to the destination 
before writing the new cluster to the source

• Meanwhile, bitmap tracks what additional clusters still need to be 
copied in background

• Similar to drive-mirror, but

with different point in time
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Incremental backup

• qemu 2.5 will add ability for incremental backup via bitmaps

• User can create bitmaps at any point in guest time; each bitmap 
tracks guest cluster changes after that point

• While drive-mirror can only copy at backing chain boundaries, a 
bitmap allows extracting all clusters changed since point in time, 
capturing incremental state without a source backing chain

• Incremental backups can then be combined in backing chains of 
their own to reform full image
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Part III

Libvirt control



  

Libvirt representation of backing chain

• virDomainGetXMLDesc() API

•virsh dumpxml guest

• Backing chain represented by 
nested children of <disk>

• Currently only for live guests, 
but planned for offline guests

• Name a specific chain member 
by index (“vda[1]”) or filename 
(“/tmp/wrap.qcow2”)

<disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/tmp/wrap2.qcow2'/>
 <backingStore type='file' index='1'>
  <format type='qcow2'/>
  <source file='/tmp/wrap.qcow2'/>
  <backingStore type='file' index='2'>
   <format type='qcow2'/>
   <source file='/tmp/base.qcow2'/>
   <backingStore/>
  </backingStore>
 </backingStore>
 <target dev='vda' bus='virtio'/>
 ...
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Creating an external snapshot

• virDomainSnapshotCreateXML() API

•virsh snapshot-create domain description.xml
•virsh snapshot-create-as domain --disk-only \
  --diskspec vda,file=/path/to/wrapper.qcow2

• Maps to qemu blockdev-snapshot-sync, also manages offline 
chain creation through qemu-img

• Often used with additional flags:

• --no-metadata: cause only side effect of backing chain growth
• --quiesce: freeze guest I/O, but requires guest agent
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Performing block pull

• virDomainBlockRebase() API

•virsh blockpull domain vda --wait --verbose

• Mapped to qemu block-stream, with current limitation of only 
pulling into active layer

• When qemu 2.5 adds intermediate streaming, syntax will be:

•virsh blockpull domain "vda[1]" --base "vda[3]"
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Performing block commit

• virDomainBlockCommit() API, plus virDomainBlockJobAbort() for 
active jobs

•virsh blockcommit domain vda --top "vda[1]"

•virsh blockjob domain vda

•virsh blockcommit domain vda --shallow \

  --pivot --verbose --timeout 60

• May gain additional flags if qemu block-commit adds features

29



  

Performing block copy

• virDomainBlockCopy()/virDomainBlockJobAbort() APIs

•virsh blockcopy domain vda /path/to/dest --pivot

• Currently requires transient domain

• Plan to relax that with qemu 2.5 persistent bitmap support
• Currently captures point in time at end of job (drive-mirror)

• May later add flag for start of job semantics (drive-backup)
• Plan to add --quiesce flag to job abort, like in snapshot creation, 
instead of having to manually use domfsfreeze/domfsthaw
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Piecing it all together: efficient live backup

• Goal: create (potentially bootable) backup of live guest disk state

/my/base  /my/image  /my/image.tmp← ←
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Piecing it all together: efficient live backup

• Goal: create (potentially bootable) backup of live guest disk state

• No guest downtime, and with a fast storage array command, the 
delta contained in temporary chain wrapper is small enough for 
entire operation to take less than a second

$ virsh snapshot-create-as domain tmp \
   --no-metadata --disk-only --quiesce
$ cp --reflink=always /my/image /backup/image
$ virsh blockcommit domain vda --shallow \
   --pivot --verbose
$ rm /my/image.tmp
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Piecing it all together: revert to snapshot

• Goal: roll back to disk state in an external snapshot

/my/base  /my/experiment←

<disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/my/experiment'/>
...
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Piecing it all together: revert to snapshot

• Goal: roll back to disk state in an external snapshot
$ virsh destroy domain
$ virsh edit domain # update <disk> details
$ rm /my/experiment
$ virsh start domain

/my/base  /my/experiment←

<disk type='file' device='disk'>
 <driver name='qemu' type='qcow2'/>
 <source file='/my/base'/>
...
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Piecing it all together: revert to snapshot

• Goal: roll back to disk state in an external snapshot

• If rest of chain must be kept consistent, use copies or create 
additional wrappers with qemu-img to avoid corrupting base

• If rest of chain is not needed, be sure to delete files that are 
invalidated after reverting

$ virsh destroy domain
$ virsh edit domain # update <disk> details
$ rm /my/experiment
$ virsh start domain
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Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage

/nfs/image  /nfs/image.tmp←
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Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage
$ virsh blockcopy domain vda /local/wrap \
   --shallow --pivot --verbose --reuse-external
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   --shallow --pivot --verbose --reuse-external
$ virsh dumpxml domain > file.xml
$ virsh define file.xml

/nfs/image  /nfs/image.tmp←
/local/image  /local/wrap←
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Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage
$ virsh blockcopy domain vda /local/wrap \
   --shallow --pivot --verbose --reuse-external
$ virsh dumpxml domain > file.xml
$ virsh define file.xml
$ virsh blockcommit domain vda --shallow \
   --pivot --verbose

/nfs/image  /nfs/image.tmp←
/local/image  /local/wrap←
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Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage
$ virsh blockcopy domain vda /local/wrap \
   --shallow --pivot --verbose --reuse-external
$ virsh dumpxml domain > file.xml
$ virsh define file.xml
$ virsh blockcommit domain vda --shallow \
   --pivot --verbose
$ rm file.xml /local/wrap /nfs/image.tmp

/nfs/image  /nfs/image.tmp←
/local/image  /local/wrap←
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Piecing it all together: live storage migration

• Goal: rebase storage chain from network to local storage

• The undefine/dumpxml/define steps will drop once libvirt can use 
persistent bitmaps to allow copy with non-transient domains

$ virsh blockcopy domain vda /local/wrap \
   --shallow --pivot --verbose --reuse-external
$ virsh dumpxml domain > file.xml
$ virsh define file.xml
$ virsh blockcommit domain vda --shallow \
   --pivot --verbose
$ rm file.xml /local/wrap /nfs/image.tmp
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Future work

• Libvirt support of offline chain management

• Libvirt support of revert to external snapshot

• Qemu 2.5 additions, and adding libvirt support:

• Intermediate streaming
• Incremental backup
• Use persistent bitmap

• Libvirt support to expose mapping information, or at a minimum 
whether pull or commit would move less data

• Patches welcome!
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          Questions?

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

http://creativecommons.org/licenses/by-sa/3.0/
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