
Getting Started with Coccinelle
KVM edition

part 1

Julia Lawall (Inria/LIP6/Irill/UPMC)

http://coccinelle.lip6.fr
http://btrlinux.inria.fr

August 20, 2015

1

This tutorial is designed to work with Qemu version
2.4.0 (http://wiki.qemu.org/Download) and with
Coccinelle version 1.0.0.

Other versions of Coccinelle should be acceptable.

2

Common programming problems

• The software evolution dilemma.

– Modernizing APIs can make code more effective.
– Updating all parts of the code is error prone and boring.
– Mixing different functions for the same purpose is confusing.

• The software robustness problem.

– Error conditions are not always checked for.
– Error conditions may be checked for when no errors can occur.

• Programmers are sloppy.

Need for pervasive code changes.

3

Example: Overlapping APIs

void *cpu_physical_memory_map(hwaddr addr, hwaddr *plen,

int is_write)

{

return address_space_map(&address_space_memory, addr, plen,

is_write);

}

void cpu_physical_memory_unmap(void *buffer, hwaddr len,

int is_write, hwaddr access_len)

{

return address_space_unmap(&address_space_memory, buffer,

len, is_write, access_len);

}

Qemu BiteSizedTasks suggests using address space *:

28 occurrences of cpu physical memory map, in 15 files.

38 occurrences of cpu physical memory unmap, in 15 files.

4

Example: Overlapping APIs

void *cpu_physical_memory_map(hwaddr addr, hwaddr *plen,

int is_write)

{

return address_space_map(&address_space_memory, addr, plen,

is_write);

}

void cpu_physical_memory_unmap(void *buffer, hwaddr len,

int is_write, hwaddr access_len)

{

return address_space_unmap(&address_space_memory, buffer,

len, is_write, access_len);

}

Qemu BiteSizedTasks suggests using address space *:

• 28 occurrences of cpu physical memory map, in 15 files.

• 38 occurrences of cpu physical memory unmap, in 15 files.

5

Example: Incorrect error checking

ifd = open(argv[1], O_RDONLY);

if (ifd < 0) {

fprintf(stderr, "%s: Can’t open %s: %s\n",

argv[0], argv[1], strerror(errno));

exit(EXIT_FAILURE);

}

ofd = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, FILE_PERM);

if (ifd < 0) {

fprintf(stderr, "%s: Can’t open %s: %s\n",

argv[0], argv[2], strerror(errno));

if (ifd)

close(ifd);

exit(EXIT_FAILURE);

}

roms/u-boot/board/samsung/origen/tools/mkorigenspl.c

6

Example: Incorrect error checking

ifd = open(argv[1], O_RDONLY);

if (ifd < 0) {

fprintf(stderr, "%s: Can’t open %s: %s\n",

argv[0], argv[1], strerror(errno));

exit(EXIT_FAILURE);

}

ofd = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, FILE_PERM);

if (ifd < 0) {

fprintf(stderr, "%s: Can’t open %s: %s\n",

argv[0], argv[2], strerror(errno));

if (ifd)

close(ifd);

exit(EXIT_FAILURE);

}

roms/u-boot/board/samsung/origen/tools/mkorigenspl.c

7

Example: Complicated code that does very little

int power_init_board(void)

{

int ret;

/*

* For PMIC the I2C bus is named as I2C5, but it

* is connected to logical I2C adapter 0

*/

ret = pmic_init(I2C_0);

if (ret)

return ret;

return 0;

}

roms/u-boot/board/samsung/goni/goni.c

8

Our goals

• Automatically find code containing bugs or defects, or
requiring evolutions.

• Automatically fix bugs or defects, and perform evolutions.

• Provide a system that is accessible to software developers.

9

Requirements for automation

The ability to abstract over irrelevant information:

• cpu physical memory unmap(data, size, 0, 0);

• Argument values don’t matter.

The ability to transform code fragments:

• ofd = ...; if (ifd < 0) ...

• Replace ifd < 0 by ofd < 0.

The ability to match scattered code fragments:

• A newly unnecessary declaration may be far from its former
use.

10

Coccinelle

Program matching and transformation for unpreprocessed C code.

Fits with the existing habits of C programmers.

• C-like, patch-like notation

Semantic patch language (SmPL):

• Metavariables for abstracting over subterms.

• “. . . ” for abstracting over code sequences.

• Patch-like notation (−/+) for expressing transformations.

• ∗ for searching.

11

Example: cpu physical memory * functions

Our goal:
Replace the cpu functions by the address space functions.

void *cpu_physical_memory_map(hwaddr addr, hwaddr *plen,

int is_write)

{

return address_space_map(&address_space_memory, addr, plen,

is_write);

}

void cpu_physical_memory_unmap(void *buffer, hwaddr len,

int is_write, hwaddr access_len)

{

return address_space_unmap(&address_space_memory, buffer,

len, is_write, access_len);

}

12

Building a semantic patch

Select some model code fragments:

@@

expression addr, plen, is_write;

@@

- cpu_physical_memory_map(addr, &size, 0)

+ address_space_map(&address_space_memory, addr, plen, is_write)

@@

expression buffer, len, is_write, access_len;

@@

- cpu_physical_memory_unmap(data, size, 0, 0)

+ address_space_unmap(&address_space_memory, buffer, len,

is_write, access_len)

Modifies 62 calls

13

Building a semantic patch

Generalize and write the corresponding transformation:

@@

expression addr, plen, is_write;

@@

cpu_physical_memory_map(addr, plen, is_write)

+ address_space_map(&address_space_memory, addr, plen, is_write)

@@

expression buffer, len, is_write, access_len;

@@

cpu_physical_memory_unmap(buffer, len, is_write, access_len)

+ address_space_unmap(&address_space_memory, buffer, len,

is_write, access_len)

Modifies 62 calls

14

Building a semantic patch

Generalize and write the corresponding transformation:

@@

expression addr, plen, is_write;

@@

- cpu_physical_memory_map(addr, plen, is_write)

+ address_space_map(&address_space_memory, addr, plen, is_write)

@@

expression buffer, len, is_write, access_len;

@@

- cpu_physical_memory_unmap(buffer, len, is_write, access_len)

+ address_space_unmap(&address_space_memory, buffer, len,

is_write, access_len)

Modifies 62 calls

15

Building a semantic patch

Add metavariable declarations:

@@

expression addr, plen, is_write;

@@

- cpu_physical_memory_map(addr, plen, is_write)

+ address_space_map(&address_space_memory, addr, plen, is_write)

@@

expression buffer, len, is_write, access_len;

@@

- cpu_physical_memory_unmap(buffer, len, is_write, access_len)

+ address_space_unmap(&address_space_memory, buffer, len,

+ is_write, access_len)

Modifies 62 calls

16

Building a semantic patch

Add metavariable declarations:

@@

expression addr, plen, is_write;

@@

- cpu_physical_memory_map(addr, plen, is_write)

+ address_space_map(&address_space_memory, addr, plen, is_write)

@@

expression buffer, len, is_write, access_len;

@@

- cpu_physical_memory_unmap(buffer, len, is_write, access_len)

+ address_space_unmap(&address_space_memory, buffer, len,

+ is_write, access_len)

Modifies 62 calls

17

Semantic patch structure

Two parts per rule:

• Metavariable declaration

• Transformation specification

A semantic patch can contain multiple rules.

18

Metavariable types

• expression, statement, identifier, type, constant,
local idexpression

• A type from the source program

• iterator, declarer, iterator name, declarer name, typedef

19

Transformation specification

• - in the leftmost column for something to remove

• + in the leftmost column for something to add

• * in the leftmost column for something of interest

– Cannot be used with + and -.

• Spaces, newlines irrelevant.

20

Exercise 1

1. Create a file cpu.cocci containing the following:

@@

expression addr, plen, is_write;

@@

- cpu_physical_memory_map(addr, plen, is_write)

+ address_space_map(&address_space_memory, addr, plen, is_write)

@@

expression buffer, len, is_write, access_len;

@@

- cpu_physical_memory_unmap(buffer, len, is_write, access_len)

+ address_space_unmap(&address_space_memory, buffer, len,

+ is_write, access_len)

2. Run spatch: spatch --sp-file cpu.cocci --dir

qemu/hw/virtio

3. Did your semantic patch do everything it should have?

4. Did it do something it should not have?

21

Exercise 2

1. When using Coccinelle, - and + can be placed on any token,
not necessarily complete terms. Compare your previous result
with the result for the following rule (unmap case omitted for
conciseness):

@@

expression addr, plen, is_write;

@@

- cpu_physical_memory_map(

+ address_space_map(&address_space_memory,

addr, plen, is_write)

2. Likewise, try the following transformation rule:

@@

@@

- cpu_physical_memory_map(

+ address_space_map(&address_space_memory,

22

Exercise 3
The following code is unnecessarily complex, in that the result of
calling ubi io write could just be returned directly:

err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,

ubi->vid_hdr_alsize);

return err;

1. Write a semantic patch to simplify such code and test it on
roms/u-boot/drivers/usb.

2. Are all of the transformations correct?

3. In writing this semantic patch, err can be represented as a
metavariable that is declared to be an expression, an
identifier, or an idexpression. Try these three options
and see which gives the best results. (Hint: look at
roms/u-boot/drivers/usb/gadget/composite.c and
roms/u-boot/drivers/dfu/dfu.c)

23

Practical issues

To check that a semantic patch is valid:

spatch --parse-cocci mysp.cocci

To run a semantic patch:

spatch --sp-file mysp.cocci file.c

spatch --sp-file mysp.cocci --dir directory

Put the interesting output in a file:

spatch ... > output.patch

Omit the uninteresting output:

spatch --very-quiet ...

24

More practical issues

If you don’t need to include header files:

spatch --sp-file mysp.cocci --dir directory

--no-includes --include-headers

To understand why your semantic patch didn’t work:

spatch --sp-file mysp.cocci file.c --debug

The source code:

qemu-2.4.0, from http://wiki.qemu.org/Download

These slides:

http://events.linuxfoundation.org/events/kvm-
forum/program/slides

25

Example: Incorrect error checking

ofd = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, FILE_PERM);

if (ifd < 0) {

fprintf(stderr, "%s: Can’t open %s: %s\n",

argv[0], argv[2], strerror(errno));

if (ifd)

close(ifd);

exit(EXIT_FAILURE);

}

Problem: The tested variable is different than the assigned one.

26

Example: Incorrect error checking

ofd = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, FILE_PERM);

if (ifd < 0) {

fprintf(stderr, "%s: Can’t open %s: %s\n",

argv[0], argv[2], strerror(errno));

if (ifd)

close(ifd);

exit(EXIT_FAILURE);

}

Problem: The tested variable is different than the assigned one.

27

Semantic patch attempt

@@

expression x, y;

identifier f;

statement S;

@@

x = f(...);

if (y < 0) S

- y

+ x

< 0) S

Does it work? Does it seem like the best way to do it?

28

Semantic patch attempt

@@

expression x, y;

identifier f;

statement S;

@@

x = f(...);

if (y < 0) S

- y

+ x

< 0) S

Does it work? Does it seem like the best way to do it?

29

Semantic patch attempt

@@

expression x, y;

identifier f;

statement S;

@@

x = f(...);

if (y < 0) S

- y

+ x

< 0) S

Does it work? Does it seem like the best way to do it?

30

Semantic patch attempt

Problem:

• expression x and expression y match all expressions.

• Both same expressions and different expressions.

Two cases:

x = f(...);

if (x < 0) S

and:

x = f(...);

if (y < 0) S

where y is different from x.

Want to transform only the second one.

31

Semantic patch attempt

Problem:

• expression x and expression y match all expressions.

• Both same expressions and different expressions.

Two cases:

x = f(...);

if (x < 0) S

and:

x = f(...);

if (y < 0) S

where y is different from x.

Want to transform only the second one.

32

Semantic patch attempt

Problem:

• expression x and expression y match all expressions.

• Both same expressions and different expressions.

Two cases:

x = f(...);

if (x < 0) S

and:

x = f(...);

if (y < 0) S

where y is different from x.

Want to transform only the second one.

33

Disjunction

• A sequence of patterns between (...| ...).

• Patterns checked in order and the first that matches is chosen.

• Must be escaped (\) if not in column 0.

@@

identifier x,y;

identifier f;

statement S;

@@

x = f(...);

(

if (x < 0) S

|

if (

- y

+ x

< 0) S

)

34

Exercise 4
Qemu coding style encourages the use of braces around all if
branches. One way to achieve this would be (single-branch case
only):

@@

expression e; statement S;

@@

if (e)

+ {

S

+ }

But this rule adds braces around if branches that already have
braces, because an open brace followed by code followed by a close
branch represents a single statement.

Use a disjunction to write a single rule that puts braces around
some common if branch cases, such as an assignment, break,
return, etc. Test your rule on dtc/fdtdump.c.

[Hint on next page] 35

Exercise 4, contd.

Hint: + code has to be attached to an actual existing or removed
token; it cannot be attached to the outside of a disjunction.

36

Compressing return sequences

int power_init_board(void)

{

int ret;

/*

* For PMIC the I2C bus is named as I2C5, but it

* is connected to logical I2C adapter 0

*/

ret = pmic_init(I2C_0);

if (ret)

return ret;

return 0;

}

37

Compressing return sequences

int power_init_board(void)

{

int ret;

/*

* For PMIC the I2C bus is named as I2C5, but it

* is connected to logical I2C adapter 0

*/

ret = pmic_init(I2C_0);

if (ret)

return ret;

return 0;

}

38

Compressing return sequences

int power_init_board(void)

{

int ret;

/*

* For PMIC the I2C bus is named as I2C5, but it

* is connected to logical I2C adapter 0

*/

ret = pmic_init(I2C_0);

return ret;

return ret;

return 0;

}

39

Compressing return sequences

int power_init_board(void)

{

int ret;

/*

* For PMIC the I2C bus is named as I2C5, but it

* is connected to logical I2C adapter 0

*/

ret = pmic_init(I2C_0);

return ret;

return ret;

return 0;

}

40

Compressing return sequences

int power_init_board(void)

{

int ret;

/*

* For PMIC the I2C bus is named as I2C5, but it

* is connected to logical I2C adapter 0

*/

return pmic_init(I2C_0);

return ret;

return ret;

return 0;

}

41

Compressing return sequences

int power_init_board(void)

{

int ret;

/*

* For PMIC the I2C bus is named as I2C5, but it

* is connected to logical I2C adapter 0

*/

return pmic_init(I2C_0);

return ret;

return ret;

return 0;

}

42

Compressing return sequences

int power_init_board(void)

{

int ret;

/*

* For PMIC the I2C bus is named as I2C5, but it

* is connected to logical I2C adapter 0

*/

return pmic_init(I2C_0);

return ret;

return ret;

return 0;

}

43

Some semantic patch rules

@@

expression ret;

@@

- if (ret) return ret;

- return 0;

+ return ret;

@@

expression ret;

@@

- ret = e;

- return ret;

+ return e;

44

Some semantic patch rules

@@

expression ret;

@@

- if (ret) return ret;

- return 0;

+ return ret;

@@

expression ret, e;

@@

- ret = e;

- return ret;

+ return e;

45

False positive

- c->rate = ccu_clk->freq_tbl[ccu_clk->freq_id];

- return c->rate;

+ return ccu_clk->freq_tbl[ccu_clk->freq_id];

For this rule:

@@

expression ret, e;

@@

- ret = e;

- return ret;

+ return e;

ret cannot be an arbitrary expression

46

False positive

- c->rate = ccu_clk->freq_tbl[ccu_clk->freq_id];

- return c->rate;

+ return ccu_clk->freq_tbl[ccu_clk->freq_id];

For this rule:

@@

expression ret, e;

@@

- ret = e;

- return ret;

+ return e;

ret cannot be an arbitrary expression

47

Revised semantic patch rules

@@

expression ret;

@@

- if (ret) return ret;

- return 0;

+ return ret;

@@

local idexpression ret;

expression e;

@@

- ret = e;

- return ret;

+ return e;

48

Removing unused identifiers

The following rule may remove the only use of ret:

@@

local idexpression ret;

expression e;

@@

- ret = e;

- return ret;

+ return e;

Problem: The declaration of ret can be far from the use.

49

Dots

@@

type T;

identifier i;

@@

- T i;

... when != i

“. . . ” matches all possible execution paths from the pattern before
to the pattern after

No pattern before means the beginning of the function.

No pattern after means the end of the function.

The patterns before and after cannot appear in the region
matched by “. . . ” (shortest path principle).

50

Dots

@@

type T;

identifier i;

@@

- T i;

... when != i

“. . . ” matches all possible execution paths from the pattern before
to the pattern after

• No pattern before means the beginning of the function.

• No pattern after means the end of the function.

• The patterns before and after cannot appear in the region
matched by “. . . ” (shortest path principle).

51

The complete semantic patch
@@

expression ret;

@@

- if (ret) return ret;

- return 0;

+ return ret;

@@

local idexpression ret;

expression e;

@@

- ret = e;

- return ret;

+ return e;

@@

type T; identifier i;

@@

- T i;

... when != i

52

Example

int power_init_board(void)

{

- int ret;

-

/*

* For PMIC the I2C bus is named as I2C5, but it

* is connected to logical I2C adapter 0

*/

- ret = pmic_init(I2C_0);

- if (ret)

- return ret;

-

- return 0;

+ return pmic_init(I2C_0);

}

53

Exercise 5

The semantic patch for removing unused variables only matches a
variable declaration when the declaration does not initialize the
variable.

• Extend the complete semantic patch (slide 52), so that it also
removes unused variables that are initialized to a constant.

• Test your semantic patch on hw/display and hw/xen.

• Another issue is that a declaration may declare multiple
variables. What does Coccinelle do in this case?

• Hint: A metavariable declared as constant will only match a
constant.

54

Exercise 6
We have seen the use of “. . . ” to match a sequence of statements.
“. . . ” can be used to match other kinds of terms whose identity
doesn’t matter, such as a sequence of arguments. Use “. . . ” and a
disjunction to write a single semantic patch rule that addresses
(some part of) the following Qemu code transition:

The QError macros QERR are a hack to help with the
transition to the current error.h API. Avoid them in new
code, use simple message strings instead.

Some possible transformations are:

- error_setg(errp, QERR_IO_ERROR);

+ error_setg(errp, "An IO error has occurred");

- error_setg(errp, QERR_DEVICE_HAS_NO_MEDIUM, device);

+ error_setg(errp, "Device ’%s’ has no medium", device);

- error_setg(errp, QERR_PROPERTY_VALUE_BAD,

+ error_setg(errp, "Property ’%s.%s’ doesn’t take value ’%s’",

object_get_typename(OBJECT(dev)), prop->name, value);

55

Summary

SmPL features seen so far:

• Metavariables for abstracting over arbitrary terms.

• Metavariables restricted to particular types.

• Multiple rules.

• Disjunctions.

• Dots.

56

Getting Started with Coccinelle
KVM edition

part 2

Julia Lawall (Inria/LIP6/Irill/UPMC)

http://coccinelle.lip6.fr
http://btrlinux.inria.fr

August 20, 2015

1

Malloc bite-sized task

• Convert uses of malloc to either g malloc, g new

– More rarely g try malloc or g try new if a lot of memory is
being allocated.

• Likewise, convert calloc to either g new0 or g try new0.

• Drop return value checks unless using g try new/g try new0.

2

g malloc man page

• These functions provide support for allocating and freeing
memory.

– If any call to allocate memory fails, the application is
terminated. There is no need to check if the call succeeded.

– It’s important to match g malloc() (and wrappers such as
g new()) with g free()

• g malloc: Allocates n bytes bytes of memory. If n bytes is 0
it returns NULL.

• g new: Allocates n structs elements of type struct type.

– The returned pointer is cast to a pointer to the given type: it
is normally unnecessary to cast it explicitly.

– If n structs is 0 it returns NULL.

3

Issues we consider

• g malloc/g new should match with g free

• g new should be used for structures.

• Casts on the result of g new are not needed (exercise).

• NULL tests are not needed.

4

Issues we ignore

– Large allocations should use try functions.

– Coccinelle doesn’t know much about values.
– Could make a rule that highlights cases that need attention.

• For a calculated size, g malloc/g new may return 0.

– Coccinelle doesn’t know much about values.
– Could make a rule that highlights cases that need attention.

• g malloc vs. g malloc0

– Left to an exercise.

5

Basic malloc transformation

@@

expression e;

@@

- malloc(e)

+ g_malloc(e)

6

Example

block/iscsi.c:

- acb->task = malloc(sizeof(struct scsi_task));

+ acb->task = g_malloc(sizeof(struct scsi_task));

Changes 836 calls in qemu-2.4.0-rc4, in 428 files.

7

Malloc transformation assessment

+ There are many occurrences.
• Lot of opportunity for automation.

− How do we find the corresponding frees?
• Convert all mallocs and frees, and hope for the best?

• Find mallocs that are always followed by frees?

• Something else?

We try the first option...

8

Malloc transformation assessment

+ There are many occurrences.
• Lot of opportunity for automation.

− How do we find the corresponding frees?
• Convert all mallocs and frees, and hope for the best?

• Find mallocs that are always followed by frees?

• Something else?

We try the first option...

8

Malloc and free: first attempt

@@

expression x,e;

@@

- x = malloc(e)

+ x = g_malloc(e)

... when != x = e1

- free(x)

+ g_free(x)

Transforms 124 out of 836 occurrences.

9

Malloc and free: safer version

@@

expression x,e,e1;

@@

- x = malloc(e)

+ x = g_malloc(e)

... when != x = e1

- free(x)

+ g_free(x)

Transforms 124 out of 836 occurrences.

10

Malloc and free: Potential for false positives

“. . . ” matches all paths except error paths.

Example:

@@

@@

a();

...

b();

...

c();

c() may be missing if a() or b() fails.

11

Malloc and free: Potential for false positives

“. . . ” matches all paths except error paths.

Example:

@@

@@

a();

...

b();

...

c();

c() may be missing if a() or b() fails.

12

Malloc and free: False positive

roms/u-boot/fs/yaffs2/yaffs nandif.c:

YCHAR *clonedName = malloc(...);

struct yaffs_dev *dev = malloc(...);

struct yaffs_param *param;

if (dev && clonedName) {

memset(dev, 0, sizeof(struct yaffs_dev));

strcpy(clonedName, name);

param = &dev->param;

param->name = clonedName;

...

return dev;

}

free(dev);

free(clonedName);

Success path in the if, failure path afterwards.

13

Malloc and free: False positive

roms/u-boot/fs/yaffs2/yaffs nandif.c:

YCHAR *clonedName = malloc(...);

struct yaffs_dev *dev = malloc(...);

struct yaffs_param *param;

if (dev && clonedName) {

memset(dev, 0, sizeof(struct yaffs_dev));

strcpy(clonedName, name);

param = &dev->param;

param->name = clonedName;

...

return dev;

}

free(dev);

free(clonedName);

Success path in the if, failure path afterwards.

14

How to find cases where malloc’d data is always freed

Between malloc and free there can be many ifs.

• Some test for failure of malloc and abort

No free expected.

• Some test for failure of other things and abort

Free required.

• Some do not abort

Any behavior is acceptable.

Issue: We don’t know how many times these things will occur.

15

How to find cases where malloc’d data is always freed

Between malloc and free there can be many ifs.

• Some test for failure of malloc and abort

No free expected.

• Some test for failure of other things and abort

Free required.

• Some do not abort

Any behavior is acceptable.

Issue: We don’t know how many times these things will occur.

15

How to find cases where malloc’d data is always freed

Between malloc and free there can be many ifs.

• Some test for failure of malloc and abort

No free expected.

• Some test for failure of other things and abort

Free required.

• Some do not abort

Any behavior is acceptable.

Issue: We don’t know how many times these things will occur.

15

How to find cases where malloc’d data is always freed

Between malloc and free there can be many ifs.

• Some test for failure of malloc and abort

No free expected.

• Some test for failure of other things and abort

Free required.

• Some do not abort

Any behavior is acceptable.

Issue: We don’t know how many times these things will occur.

15

How to find cases where malloc’d data is always freed

Between malloc and free there can be many ifs.

• Some test for failure of malloc and abort

No free expected.

• Some test for failure of other things and abort

Free required.

• Some do not abort

Any behavior is acceptable.

Issue: We don’t know how many times these things will occur.

16

Improved malloc and free transformation

Adding a nest:()

@@ expression x,e; @@

- x = malloc(e)

+ x = g_malloc(e)

<... when != if (...) { ... return ...; }

when != x = e1

(

if (x == NULL) S

|

if (...) { ... free(x); ... return ...; }

)

...>

- free(x)

+ g_free(x)

Transforms 108 out of 836 occurrences.

17

Improved malloc and free transformation

Adding a nest:

@@ expression x,e; @@

- x = malloc(e)

+ x = g_malloc(e)

<... when != if (...) { ... return ...; }

when != x = e1

(

if (x == NULL) S

|

if (...) { ... free(x); ... return ...; }

)

...>

- free(x)

+ g_free(x)

Transforms 108 out of 836 occurrences.

18

Improved malloc and free transformation

Constraining a nest (forbidden code):

@@ expression x,e; @@

- x = malloc(e)

+ x = g_malloc(e)

<... when != if (...) { ... return ...; }

when != x = e1

(

if (x == NULL) S

|

if (...) { ... free(x); ... return ...; }

)

...>

- free(x)

+ g_free(x)

Transforms 108 out of 836 occurrences.

19

Improved malloc and free transformation

Adding exceptions (allowed code):

@@ expression x,e; statement S; @@

- x = malloc(e)

+ x = g_malloc(e)

<... when != if (...) { ... return ...; }

when != x = e1

(

if (x == NULL) S

|

if (...) { ... free(x); ... return ...; }

)

...>

- free(x)

+ g_free(x)

Transforms 108 out of 836 occurrences.

20

Exercise 7

The basic malloc transformation semantic patch (slide 6) can also
be written as:

@@

expression e;

@@

- malloc

+ g_malloc

(e)

• Implement both strategies and try them on the
pixmax/pixman directory.

• What is the difference between the results?

21

Exercise 8

Test the original malloc-free semantic patch:

@@ expression x,e; @@

- x = malloc(e)

+ x = g_malloc(e)

... when != x = e1

- free(x)

+ g_free(x)

on the following files:

• pixman/test/utils.c

• roms/u-boot/board/zeus/zeus.c

• roms/openbios/arch/sparc32/multiboot.c

Are all cases false positives (malloc of a non-local buffer)?
Or does Qemu contain some potential memory leaks?

22

Exercise 9

Often when allocating memory it is necessary to also zero it, as
exemplified by the following code (roms/u-boot/fs/zfs/zfs.c):

data = malloc(sizeof(*data));

if (!data)

return 0;

memset(data, 0, sizeof(*data));

g malloc has a counterpart, g malloc0, that does this directly.

Pretend that there exists a function malloc0 that both mallocs
and zeroes, and write a semantic patch that introduces uses of this
function.

[Continued on the next page]

23

Exercise 9, contd

For example, your semantic patch should produce the following
result on the above code:

data = malloc0(sizeof(*data));

if (!data)

return 0;

Try your semantic patch on roms/u-boot/drivers/net.

Are there any false positives? Can you imagine how there could be
any? If you don’t find any, rewrite your semantic patch to convert
g malloc to g malloc0 and assess the results.

24

Using g new

g new: Allocates n structs elements of type struct type.

Easy case: Structure type explicit:

@@

identifier s;

@@

- g_malloc(sizeof(struct s))

+ g_new(s,1)

Six occurrences

25

Using g new

g new: Allocates n structs elements of type struct type.

Easy case: Structure type explicit:

@@

identifier s;

@@

- g_malloc(sizeof(struct s))

+ g_new(s,1)

Six occurrences

26

Other possibilities for g new

• Zeroed allocation (exercise):
g malloc0(sizeof(struct omap mmc s))

• Array allocation:
g malloc0(sizeof(struct iovec) * ab->nr entries)

• Sizeof expression: g malloc(sizeof(*config))

• Sizeof typedef: g malloc0(sizeof(QEMUTimer))

• Combination: g malloc(niov * sizeof(*iov))

27

Array allocation

Example:

- *iov = g_malloc0(sizeof(struct iovec) * ab->nr_entries);

+ *iov = g_new0(iovec, ab->nr_entries);

Semantic patch:

@@

identifier i;

expression e;

@@

- g_malloc0(sizeof(struct i) * e)

+ g_new0(i, e)

28

Array allocation

Example:

- *iov = g_malloc0(sizeof(struct iovec) * ab->nr_entries);

+ *iov = g_new0(iovec, ab->nr_entries);

Semantic patch:

@@

identifier i;

expression e;

@@

- g_malloc0(sizeof(struct i) * e)

+ g_new0(i, e)

29

Results

Five g malloc0 calls transformed

As expected:

- *iov = g_malloc0(sizeof(struct iovec) * ab->nr_entries);

+ *iov = g_new0(iovec, ab->nr_entries);

Perhaps unexpected:

- s->modules = g_malloc0(s->modulecount *

- sizeof(struct omap2_gpio_s));

+ s->modules = g_new0(omap2_gpio_s, s->modulecount);

30

Results

Five g malloc0 calls transformed

As expected:

- *iov = g_malloc0(sizeof(struct iovec) * ab->nr_entries);

+ *iov = g_new0(iovec, ab->nr_entries);

Perhaps unexpected:

- s->modules = g_malloc0(s->modulecount *

- sizeof(struct omap2_gpio_s));

+ s->modules = g_new0(omap2_gpio_s, s->modulecount);

31

Isomorphisms

Issues:

• Coccinelle matches code exactly as it appears.

• sizeof(struct i) * e does not match
e * sizeof(struct i).

• Leads to rule duplication for trivial variants.

Isomorphisms:

• Transparently treat similar code patterns in a similar way.

32

Isomorphisms

Issues:

• Coccinelle matches code exactly as it appears.

• sizeof(struct i) * e does not match
e * sizeof(struct i).

• Leads to rule duplication for trivial variants.

Isomorphisms:

• Transparently treat similar code patterns in a similar way.

32

Isomorphisms
Defined in standard.iso:

Expression

@ mult_comm @

expression X, Y;

@@

X * Y => Y * X

Effect visible using: spatch --parse-cocci sp.cocci:

(

-g_malloc0

>>> g_new0(r:i, r:e)

-(-sizeof-(-struct -r:i -) -* -r:e-)

|

-g_malloc0

>>> g_new0(r:i, r:e)

-(-r:e -* -sizeof-(-struct -r:i -)-)

)
33

Some other useful Isomorphisms

Expression

@ drop_cast @ expression E; pure type T; @@

(T)E => E

Expression

@ paren @ expression E; @@

(E) => E

Expression

@ is_null @ expression X; @@

X == NULL <=> NULL == X => !X

34

Exercise 10

g malloc etc. abort the program if the allocation fails, and thus
testing the result is not needed. Write a semantic patch that
removes such NULL tests that immediately follow calls to
g malloc and g malloc0. For example, your semantic patch
should perform the following transformation on linux-user/elfload.c:

info->notes = g_malloc0(NUMNOTES *

sizeof (struct memelfnote));

- if (info->notes == NULL)

- return (-ENOMEM);

Test your semantic patch on

• linux-user/elfload.c

• hw/net

What isomorphisms are involved in doing these transformations?

35

Exercise 11

If we consider malloc, rather than g malloc etc., there are cases
such as the following, from roms/u-boot/common/env attr.c,
where the NULL testing if has both “then” and “else” branches.

entry_cpy = malloc(entry_len + 1);

if (entry_cpy)

/* copy the rest of the list */

strcpy(entry_cpy, entry);

else

return -ENOMEM;

• Create a semantic patch that will remove the if test and the
appropriate branch (for testing purposes, your semantic patch
should apply to calls to malloc).

[Continued on the next page]

36

Exercise 11, contd.

• Test your semantic patch on roms/u-boot. Is the result
satisfactory? If not, try to improve it.

• If the NULL test has both “then” and “else” branches, it may
be that it is possible to recover from failure. In this case,
g try malloc, etc. should be used instead of g malloc, etc.
How could you characterize such conditions.

37

Exercise 12

g new and g new0 are macros that cast their result to the type
named in their first argument. Thus, no cast is needed on the
result.

• Write a semantic patch that transforms calls to g malloc0

that have a structure name in the first argument and that
have a cast on the result to appropriate calls to g new0. An
example, from hw/misc/omap sdrc.c is as follows:

- struct omap_sdrc_s *s = (struct omap_sdrc_s *)

- g_malloc0(sizeof(struct omap_sdrc_s));

+ struct omap_sdrc_s *s = g_new0(omap_sdrc_s, 1);

• Test your semantic patch on hw/misc

• Does anything change that you did not expect? If so, adjust
your semantic patch to only change what was intended.

38

Sizeof expression

Problem: The structure type name is not always explicit in the
sizeof.

Example: hw/xen/xen devconfig.c

struct xs_dirs *d;

- d = g_malloc(sizeof(*d));

+ d = g_new(xs_dirs, 1);

39

Sizeof expression

Semantic patch:

@@

identifier i;

struct i x;

@@

- g_malloc(sizeof(x))

+ g_new(i,1)

Coccinelle and type information:

• Coccinelle infers types in source code, when type information
is available.

• The declaration of an expression metavariable can indicate a
required type.

• This type can be used in matches and transformations.

40

Some examples

Example: hw/net/vhost net.c

Depends on the paren isomorpshism.

- struct vhost_net *net = g_malloc(sizeof *net);

+ struct vhost_net *net = g_new(vhost_net, 1);

Example: hw/i386/acpi-build.c

Coccinelle finds information in the typedef.

CrsRangeEntry *entry;

- entry = g_malloc(sizeof(*entry));

+ entry = g_new(CrsRangeEntry, 1);

41

Some examples

Example: hw/net/vhost net.c

• Depends on the paren isomorphism.

- struct vhost_net *net = g_malloc(sizeof *net);

+ struct vhost_net *net = g_new(vhost_net, 1);

Example: hw/i386/acpi-build.c

Coccinelle finds information in the typedef.

CrsRangeEntry *entry;

- entry = g_malloc(sizeof(*entry));

+ entry = g_new(CrsRangeEntry, 1);

42

Some examples

Example: hw/net/vhost net.c

• Depends on the paren isomorphism.

- struct vhost_net *net = g_malloc(sizeof *net);

+ struct vhost_net *net = g_new(vhost_net, 1);

Example: hw/i386/acpi-build.c

• Coccinelle finds information in the typedef.

CrsRangeEntry *entry;

- entry = g_malloc(sizeof(*entry));

+ entry = g_new(CrsRangeEntry, 1);

43

Limitations of type inference

Observations:

• The rule updates 16 occurrences.

• There are 68 other occurrences with sizeof(e) for some
expression e.

• We lack type information.

44

Getting more type information

• Typedefs are typically in header files.

• Default strategy: include .h files named like the .c file.

• Other options:

Updated Overlooked
Arguments instances instances

16 68
–all-includes -I qemu -I qemu/include 20 64
–recursive-includes -I qemu -I qemu/include 42 42

45

Some cases that are overlooked

block/commit.c:

typedef struct {

int ret;

} CommitCompleteData;

CommitCompleteData *data;

...

data = g_malloc(sizeof(*data));

Change the source code to add a name for the structure type.

46

Some cases that are overlooked

block/commit.c:

typedef struct {

int ret;

} CommitCompleteData;

CommitCompleteData *data;

...

data = g_malloc(sizeof(*data));

Change the source code to add a name for the structure type.

47

Some cases that are overlooked
block/qcow2-refcount.c:

typedef struct Qcow2DiscardRegion {

BlockDriverState *bs;

uint64_t offset;

uint64_t bytes;

QTAILQ_ENTRY(Qcow2DiscardRegion) next;

} Qcow2DiscardRegion;

Qcow2DiscardRegion *d, *p, *next;

...

d = g_malloc(sizeof(*d));

Add #define QTAILQ ENTRY(x) x to standard-qemu.h

Spatch option: --macro-file standard-qemu.h

5 more occurrences get transformed

48

Some cases that are overlooked
block/qcow2-refcount.c:

typedef struct Qcow2DiscardRegion {

BlockDriverState *bs;

uint64_t offset;

uint64_t bytes;

QTAILQ_ENTRY(Qcow2DiscardRegion) next;

} Qcow2DiscardRegion;

Qcow2DiscardRegion *d, *p, *next;

...

d = g_malloc(sizeof(*d));

• Add #define QTAILQ ENTRY(x) x to standard-qemu.h

• Spatch option: --macro-file standard-qemu.h

• 5 more occurrences get transformed

49

Some cases that are overlooked

ui/vnc.c

VncServerInfo *info;

...

info = g_malloc(sizeof(*info));

qapi-schema.json:

{ ’struct’: ’VncServerInfo’,

’base’: ’VncBasicInfo’,

’data’: { ’*auth’: ’str’ } }

Can’t help much with this issue...

50

Some cases that are overlooked

ui/vnc.c

VncServerInfo *info;

...

info = g_malloc(sizeof(*info));

qapi-schema.json:

{ ’struct’: ’VncServerInfo’,

’base’: ’VncBasicInfo’,

’data’: { ’*auth’: ’str’ } }

Can’t help much with this issue...

51

Sizeof typedef

Our semantic patch:

@@

identifier s;

@@

- g_malloc0(sizeof(struct s))

+ g_new0(s, 1)

This doesn’t match code like:

ALSAConf *conf = g_malloc(sizeof(ALSAConf));

52

Sizeof typedef

Issues:

• Need to find the typedef.

• Then find the structure type name.

Problem:

• Coccinelle matches only one top-level thing at a time.

• Typedef will be separate from the use of sizeof.

53

Sizeof typedef

Issues:

• Need to find the typedef.

• Then find the structure type name.

Problem:

• Coccinelle matches only one top-level thing at a time.

• Typedef will be separate from the use of sizeof.

53

Sizeof typedef

Solution: Named rules and inheritance.

Match typedef:

@@

identifier i;

type t;

@@

typedef \(struct i \| struct i { ... } \) t;

Match sizeof:

@@

type nm.t;

identifier nm.i;

@@

- g_malloc(sizeof(t))

+ g_new(i,1)

54

Sizeof typedef

Solution: Named rules and inheritance.

Match typedef:

@nm@

identifier i;

type t;

@@

typedef \(struct i \| struct i { ... } \) t;

Match sizeof:

@@

type nm.t;

identifier nm.i;

@@

- g_malloc(sizeof(t))

+ g_new(i,1)

55

Sizeof typedef

Solution: Named rules and inheritance.

Match typedef:

@nm@

identifier i;

type t;

@@

typedef \(struct i \| struct i { ... } \) t;

Match sizeof:

@@

type nm.t;

identifier nm.i;

@@

- g_malloc(sizeof(t))

+ g_new(i,1)

56

Exercise 13

Another bite-sized task is to transform exit functions so that they
have return type void.

We consider an exit function to be a function that is stored in the
exit field of a structure:

k->exit = esp_pci_scsi_uninit;

• Write a semantic patch to find initializations of an exit field.
Hint: use *, as there is nothing to transform.

• Test your semantic patch on the hw directory.

57

Exercise 14

Continuing with exit functions, write a semantic patch that finds
the definition of an exit function.

Hints:

• Write a semantic patch rule that matches an arbitrary
function definition.

• Use inheritance to force this rule to match a function whose
name was identified in the previous exercise.

• Remove the * from the rule for the previous exercise and put
it on the function definition pattern.

58

Exercise 15

Continuing with exit functions, write a semantic patch that
transforms an exit function into a function that has a void return
type.

Hints:

• Replace the returns of a value in the body of the function by a
return;

• Change the return type of the function to void

59

Exercise 16

To complete the transformation of exit functions, write a semantic
patch to:

• Find any explicit call to an exit function and remove any use
of its return value.

• Find any structure declaration that contains an exit field and
change its return type.

• Find any call to the function stored in an exit field and
remove any use of its return value.

60

NULL tests on g malloc values are not needed

A plausible implementation:

@@

expression x;

statement S;

@@

x = \(g_malloc\|g_malloc0\|g_new\|g_new0\)(...);

- if (x == NULL) S

Not general enough for all malloc cases:

datbuf = malloc(mtd->writesize + mtd->oobsize);

oobbuf = malloc(mtd->oobsize);

if (!datbuf || !oobbuf) {

puts("No memory for page buffer\n");

return 1;

}

61

NULL tests on g malloc values are not needed

A more general implementation (search only)

@@

expression x, e;

statement S1,S2;

@@

x = \(g_malloc\|g_malloc0\|g_new\|g_new0\)(...);

... when != x = e

* if (x == NULL || ...)

S1 else S2

Isomorphisms allow:

• || ... to be absent.

• else S2 to be absent.

• == to be !=.

62

Results

A good result:

datbuf = malloc(mtd->writesize + mtd->oobsize);

oobbuf = malloc(mtd->oobsize);

if (!datbuf || !oobbuf) {

puts("No memory for page buffer\n");

return 1;

}

Another good result:

da8xx_fb_info = malloc(size);

debug("da8xx_fb_info at %x\n", (unsigned int)da8xx_fb_info);

if (!da8xx_fb_info) {

printf("Memory allocation failed for fb_info\n");

return NULL;

}

63

Results

May lead to false positives:

if (hfsp_vh->start_file.total_blocks != 0) {

volume->boot_file = malloc(sizeof(hfs_fork_t));

...

} else {

boot_id = hfsp_vh->finder_info[0];

}

...

if (volume->boot_file != NULL) {

HFS_DPRINTF("Boot file:\n");

hfs_dump_fork(volume->boot_file);

}

Problem: How to ensure that the NULL test is only reachable from
the malloc?

64

Results

May lead to false positives:

if (hfsp_vh->start_file.total_blocks != 0) {

volume->boot_file = malloc(sizeof(hfs_fork_t));

...

} else {

boot_id = hfsp_vh->finder_info[0];

}

...

if (volume->boot_file != NULL) {

HFS_DPRINTF("Boot file:\n");

hfs_dump_fork(volume->boot_file);

}

Problem: How to ensure that the NULL test is only reachable from
the malloc?

65

Checking reachability

Two concepts:

• The NULL test is reachable from the malloc.

• The NULL test is reachable without performing the malloc.

Thus, two rules:

@r@

expression x, e; statement S1, S2;

@@

x = malloc(...);

... when != x = e

if (x == NULL || ...) S1 else S2

@@

expression r.x; statement r.S1, r.S2;

@@

... when != x = malloc(...);

if (x == NULL || ...) S1 else S2

How do we know that the NULL tests are the same?
66

Checking reachability

Two concepts:

• The NULL test is reachable from the malloc.

• The NULL test is reachable without performing the malloc.

Thus, two rules:

@r@

expression x, e; statement S1, S2;

@@

x = malloc(...);

... when != x = e

if (x == NULL || ...) S1 else S2

@@

expression r.x; statement r.S1, r.S2;

@@

... when != x = malloc(...);

if (x == NULL || ...) S1 else S2

How do we know that the NULL tests are the same?
67

Position variables

Position metavariables can be used to store the position of any
token, for later matching or printing.

@r@

expression x, e; statement S1, S2; position p;

@@

x = malloc(...);

... when != x = e

if@p (x == NULL || ...) S1 else S2

@@

expression r.x; statement r.S1, r.S2; position r.p;

@@

... when != x = malloc(...);

if@p (x == NULL || ...)

S1 else S2

68

Completing the semantic patch: failure implies success
@r@

expression x, e; statement S1, S2; position p;

@@

x = malloc(...);

... when != x = e

if@p (x == NULL || ...) S1 else S2

@s@

expression r.x; statement r.S1, r.S2; position r.p;

@@

... when != x = malloc(...);

if@p (x == NULL || ...)

S1 else S2

@depends on !s@

expression r.x; statement r.S1, r.S2; position r.p;

@@

x = malloc(...);

...

* if@p (x == NULL || ...) S1 else S2

69

Exercise 17
When searching for things, rather than transforming them, it may
be useful to generate the output in a variety of formats. This can
be done using the interface to python (ocaml is also available).
Position variables are useful in this context, because they provide
the file name and line number of various program elements.

Consider the following semantic patch, presented earlier.

@@

identifier x,y; identifier f; statement S;

@@

x = f(...);

(

if (x < 0) S

|

if (

- y

+ x

< 0) S

)

[Continued on the next page]

70

Exercise 17, contd.
The following python code is intended to print the file name and
line numbers of the assignment and erroneous test, respectively:

@script:python@

p1 << r.p1; // inherit a metavariable p1 from rule r

p2 << r.p2; // inherit a metavariable p2 from rule r

@@

print p1[0].file, p1[0].line, p2[0].line

Create a semantic patch consisting of the original patch rule shown
on the previous page followed by the above python code. Rewrite
the patch rule to:

• Give the rule the name, r.

• Remove the transformation.

• Add position variables p1 and p2.

• Attach the position variables to relevant code.

• Test the result on roms/u-boot.

71

Exercise 18

We have seen that * can be used to highlight items of interest.
Repeat the previous exercise, this time without using python, but
instead annotate the original code pattern with * rather than
performing transformations.

How is the result different than the result produced when using
python?

72

Exercise 19

Recall the elimination of uses of the QError macros QERR
covered in Exercise 6. Write a semantic patch involving the use of
python to eliminate uses of QError macros and replace occurrences
of %s by the constant string argument, when there is one.

An example of the desired transformation is as follows:

- error_setg(errp, QERR_INVALID_PARAMETER, "speed");

+ error_setg(errp, "Invalid parameter ’speed’");

Hint: A metavariable of type constant char[] matches an
explicit string constant.

73

Putting it all together

• Convert malloc/free to g malloc/g free.

• Convert g malloc to g malloc0.

• Convert g malloc/g malloc0 to g new/g new0.

• Drop NULL tests on the results of these functions.

74

Feature summary

• when annotations.

• Nests.

• Isomorphisms.

• Reasoning about types.

• Named rules and metavariable inheritance.

• Position variables.

• Scripting using python.

75

Other opportunities in Qemu

Bite sized tasks, ongoing transitions:

• QemuMutex/QemuCond → CompatGMutex/CompatGCond.

• Include SDState by value instead of allocating it in sd init.

• get ticks per sec() → NSEC PER SEC.

• qemu system reset request() → watchdog perform action().

• fprintf(stderr,...) → error report()

• etc.

Other issues:

• Missing frees, missing unlocks.

• Non-use of standard macros, helper functions.

• etc.

76

Conclusion

Coccinelle:

• Code-like matching and transformation language.

• Flexibility via a small set of features
(isomorphisms, types, etc.)

• Interface with python and ocaml.

• False positives possible, but can be controlled, by adjusting
the rules or manual intervention.

Status:

• 3283 Linux kernel patches mention Coccinelle

• 21 Qemu patches mention Coccinelle

• Many more opportunities seem to be present in Qemu!

77

http://coccinelle.lip6.fr

http://btrlinux.fr

http://coccinellery.org

78

