
Find out what's wrong and what's right.

David Hildenbrand, Software Engineer Virtualization and Linux Development
19. August 2015, KVM Forum 2015

Guest operating system
debugging

 Brian W. Kernighan and P. J. Plauger in The Elements of Programming Style.

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as
possible, you are, by definition, not smart enough to
debug it.

 Jeffrey Jedele (IBM employee)

Bugs – are they too strong? You're too weak!

19. August 20153 ©2015 IBM Corporation

Agenda

 Why debug guests?
 How bugs make your life hard
 Debugging techniques
 Advanced use cases
 Usage examples
 Outlook
 (Tips and Tricks)

19. August 20154 ©2015 IBM Corporation

Why debug guests?

 Fix bugs in a guest virtualization specific driver
 Fix bugs in the the guest kernel
 Fix bugs in the bios / bootloader
 Fix bugs in the VMM by observing the effects on the guest
 See how the code works in „real life“

-> Understand the system, avoid bugs
 Gain serious kernel hacking cred ;)

19. August 20155 ©2015 IBM Corporation

How bugs make your life hard

 Crashes
 Unrecoverable

 Performance degredation
 E.g. due to inefficient locking, polling ...
 System stays alive but is slow

 Incorrect behaviour
 System stays alive but doesn't behave as expected

 Deadlocks
 System might stay alive if it's not in the core
 May be hard to reproduce

 Data Corruption
 E.g. from random memory overwrites
 System might stay alive if it's not in the core
 May be hard to reproduce

As given in „Linux Kernel
Development“ by Robert Love

19. August 20156 ©2015 IBM Corporation

Debugging Techniques (1) – Three approaches

Host VMM VM (Guest)

Debug guest (inbound)

Debug VMM (outbound) Debug guest (outbound)

Focus of this presentation

(VMM / arch support)

19. August 20157 ©2015 IBM Corporation

Debugging Techniques (2) – Overview

Guest (in) VMM (out) Guest (out)

Logging Printk,
debugfs, ...

Printf, logfiles, -d
(tcg only) ...

(via guest
memory)

Tracing KGTP, strace,
dtrace ..

e.g. qemu + kvm
traces

(via gdb scripts)

Dumps kexec/kdump +
crash/gdb

e.g. process
dump + gdb

QEMU guest
dump

Profiling oprofile/perf oprofile/perf perf kvm

System Utilities top, /proc, /sys ... perf kvm stat,
QEMU monitor

QEMU monitor

Interactive
Debugger

KDB, KGDB,
crash/gdb +
/proc/kcore

gdb gdbserver in
QEMU

reuse to debug the host

19. August 20158 ©2015 IBM Corporation

Debugging Techniques (3) - Problems with inbound
techniques

Image source : http://kpc.am/1dZpT6f

SELF -

19. August 20159 ©2015 IBM Corporation

Debugging Techniques (4) - Problems with inbound
techniques

 A (minimum) functional system is required (kexec ready and working)
 Availability and quality depends on guest OS
 Not all information accessible (or very hard to get / decompose)

 Early boot code
 Interrupt handlers

 Restricted to guest OS (bootloader, (pc)bios)
 Not transparent to the guest

 Guest might behave differently when active
 Most have to be enabled/configured/installed before lightning strikes

-> Still very usefull for many debugging scenarios

Image source: https://pixabay.com/p-297580/?no_redirect

19. August 201510 ©2015 IBM Corporation

Debugging Techniques (5) – perf kvm

E.g. perf kvm --host --guest –guestvmlinux=/boot/vmlinux-custom
--guestkallsyms=kallsyms top -e cpu-clock

Take CPU
sample

(event trigger)

Add as host
sample

Take VCPU
sample(was in hw virt) Add as guest

sample

(was not in hw virt)

19. August 201511 ©2015 IBM Corporation

System 2

Debugging Techniques (6) – gdbserver in QEMU

System 1

QEMU

VM Guest

(remote) GDB

gdbserver

gdb remote protocol

 With KVM, hardware support is required for single-stepping,
break-/watchpoints

 No extra disk space needed (in contrast to dumps)
 Remote GDB side „tracing“ possible but slow
 Kernel with debug symbols only in remote GDB required

Kernel / KVM

19. August 201512 ©2015 IBM Corporation

Debugging Techniques (7) - which outbound technique
might help?

 Crashes?
 QEMU dump, QEMU monitor or interactive debugging („big

guests“)
 Performance degredation?

 perf kvm stat / perf kvm
 Interactive debugging / guest tracing (after finding the hot spots)

 Incorrect behaviour?
 Interactive debugging, guest tracing

 Deadlocks?
 Interactive debugging (esp. pause/step single threads/vcpus)
 Guest tracing

 Data Corruption?
 Interactive debugging (esp. Watchpoints), guest tracing

19. August 201513 ©2015 IBM Corporation

Advanced use cases

 Understand and fix bug reports without hardware at hand
 „VM should behave like real hardware“ (emulated devices)

 Debug scenarios that can barely be seen in real life
 Simulate and debug device error conditions
 E.g. on z Systems simulate cpu or device failures (TBD)

 What happens if ... simulate bugs
 E.g. overwrite return values from functions

-> see how the system reacts (e.g. driver failure)
 Debug software for hardware that is not available yet

 E.g. new hardware bringup (requires hw emulation)

devel♥per'schoıce

19. August 201514 ©2015 IBM Corporation

Usage example (1): facility bug in early boot code

 No output, no error indication except bad PSW on KVM
 qemu-system-s390x -s -S -kernel /boot/vmlinux ...
 gdb /boot/vmlinux -tui -ex "target remote localhost:1234" -d ~/linux/

Analyze, single-step, break, modify ...

19. August 201515 ©2015 IBM Corporation

Usage example (1): facility bug in early boot code

 Early boot check for required facilities tested for a wrong one
 Current hardware typically has both facilities, KVM did not

-> Bug triggered only in KVM (not on test systems)

19. August 201516 ©2015 IBM Corporation

Usage example (2): diag 44 in cpu_relax()

 Performance regression on new kernels
 Only visible on CPU overcommittement, many vcpus
 Long boot times, module loading extremely slow

 e.g. perf kvm state live -d 10
 Run same workload on old and new kernel
 Compare VM-EXIT / intercept results

19. August 201517 ©2015 IBM Corporation

Usage example (2): diag 44 in cpu_relax()

 „diag 44“ intercept == voluntarily give up time slice
 Number drastically changed

 All VCPUs waiting for all VCPUs in stop_machine()
 All VCPUs have to be scheduled once by the hypervisor
 If VCPUs hand of time slices (diag 44), this happens much faster

19. August 201518 ©2015 IBM Corporation

Outlook

 Guest tracing
 QEMU gdbserver support missing (see Google Summer of Code)
 Requires at least support for single-stepping + breakpoints
 HW support?

 „Live crash tool“
 Attach crash to a living remote target (QEMU's gdbserver)
 Convert crash features into gdb (python) scripts

 Support for more architectures + more hw support
 HW debugging: x86, s390x, powerpc supported – arm tbd

 Allow to simulate more hardware varieties
 E.g. CPU models on z Systems

 Expose more „fake“ registers via QEMU's gdbserver
 e.g. z Systems „last_break“ -> „where did I come from“

http://wiki.qemu.org/Google_Summer_of_Code_2012#Tracepoint_support_for_the_gdbstub

http://wiki.qemu.org/Google_Summer_of_Code_2012#Tracepoint_support_for_the_gdbstub

19. August 201519 ©2015 IBM Corporation

Tips and Tricks (1)

 Ways to start the QEMU gdbserver
 -s: Start it directly (can also be passed using libvirt)
 -s -S: Start it, don't start the guest (continue using gdb or QEMU monitor)
 Lazily using the QEMU monitor (gdbserver)

 Access the QEMU monitor using GDB „monitor“ command

-> QEMU monitor access when using libvirt possible
 Debug binaries without debugging symbols

 Architecture not announced via GDB remote protocol yet
 Use e.g. "set arch s390:64-bit"

 Python bindings for GDB are really powerful
 E.g. connect two GDBs to verify on breakpoint level (e.g. between QEMUs)

 Debug loadable kernel modules
 getsyms.sh from kgdb

 Gdb scripts to be used in the remote GDB
 Linux kernel: Documentation/kdump/gdbmacros.txt

19. August 201520 ©2015 IBM Corporation

Tips and Tricks (2): debug pcbios <-> kernel transition

pcbios
(a.k.a

s390-ccw)

guest
kernel

boot / ipl

reboot / reipl

chreipl
bootindex

Debug pcbios code Debug kernel code

(load kernel from boot
device into ram)

(reload bios into ram)

(change
boot
device)

(initial boot
device)

19. August 201521 ©2015 IBM Corporation

Tips and Tricks (2): debug pcbios <-> kernel transition

 Both code parts lie in guest memory and don't overlap
 pcbios overwrites kernel, kernel might overwrite pcbios

 Start qemu with the freshly compiled bios

qemu-system-s390x -s -S -bios ~/pcbios/s390-ccw/s390-ccw.elf ...
 Start the remote gdb with the kernel, specify both source dirs

gdb /boot/vmlinux -tui -ex "target remote localhost:1234 -d ~/linux/
-d ~/qemu/

 Tell gdb about the pcbios (symbols + loaded location)

add-symbol-file qemu/pc-bios/s390-ccw/s390-ccw.elf 0X3FE00400
 Use hw breakpoints (reloading overwrites sw breakpoints)

hbreak jump_to_IPL_2 // e.g. just before starting kernel code

hbreak *0x10014 // depends on kernel code

(depends on qemu version, memory size and s390-ccw.elf, contact me for a calculation script)

19. August 201522 ©2015 IBM Corporation

Tips and Tricks (2): just before the transition

19. August 201523 ©2015 IBM Corporation

Tips and Tricks (2): after the transition

©2015 IBM Corporation

Thank you!

david.hildenbrand@de.ibm.com

mailto:david.hildenbrand@de.ibm.com

19. August 201525 ©2015 IBM Corporation

Trademarks

* Registered trademarks of IBM Corporation
The following are trademarks or registered trademarks of other companies.

* Other product and service names might be trademarks of IBM or other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce.
Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
Windows Server and the Windows logo are trademarks of the Microsoft group of countries.
ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.
Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.
Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.
BlueMix
BigInsights
Cognos*
DB2*
DB2 Connect
Domino*
DS8000*

ECKD
FICON*
FileNet*
FlashSystem
GDPS*
GPFS

IBM*
Ibm.com
IBM (logo)*
IMS
Informix*
InfoSphere

Maximo*
MQSeries*
Performance Toolkit for VM
POWER*
Quickr*
Rational*
Sametime*

Smarter Cities*
Smarter Analytics
SPSS*
Storwize*
System Storage*
Tivoli*

WebSphere*
XIV*
z13
zEnterprise*
z/OS*

z Systems
z/VSE*
z/VM*

	Guest operating system debugging
	Quotes
	Agenda
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

