Guestoperating system
debugging

Find out what's wrong and what's right.

David Hildenbrand, Software Engineer Virtualization and Linux Development
19. August 2015, KVM Forum 2015

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as
possible, you are, by definition, not smart enough to
debug it.

Brian W. Kernighan and P. J. Plauger in The Elements of Programming Style.

Bugs — are they too strong? You're too weak!
Jeffrey Jedele (IBM employee)

3

Agenda

= Why debug guests?

= How bugs make your life hard
= Debugging techniques

= Advanced use cases

= Usage examples

= Outlook

= (Tips and Tricks)

©2015 IBM Corporation 19. August 2015

Nyt
||II“ii
(1]
[lom]]

4

Why debug guests?

= [ix bugs in a guest virtualization specific driver
= Fix bugs in the the guest kernel
= ix bugs in the bios / bootloader
= Fix bugs in the VMM by observing the effects on the guest
= See how the code works in ,real life”
-> Understand the system, avoid bugs
= Galn serious kernel hacking cred ;)

©2015 IBM Corporation 19. August 2015

How bugs make your life hard

= Crashes
= Unrecoverable
= Performance degredation
= E£.g. due to inefficient locking, polling ...
= System stays alive but is slow
= Incorrect behaviour
= System stays alive but doesn't behave as expected
= Deadlocks
= System might stay alive if it's not in the core
= May be hard to reproduce
= Data Corruption
= E.g. from random memory overwrites
= System might stay alive if it's not in the core
= May be hard to reproduce

As given in ,Linux Kernel iz

Development“ by Robert Love H"”

5 ©2015 IBM Corporation 19. August 2015

6

Debugging Techniques (1) — Three approaches

Debug VMM (outbound)

©2015 IBM Corporation 19. August 2015

VM (Guest)

Debug guest (inbound)

(VMM / arch support)

Debug guest (outbound)

Focus of this presentation

7

Debugging Techniqgues (2) — Overview

Logging
Tracing
Dumps

Profiling
System Utilities

Interactive
Debugger

©2015 IBM Corporation 19. August 2015

Guest (in)

Printk,
debugfs, ...

KGTP, strace,
dtrace ..

kexec/kdump +
crash/gdb

oprofile/perf

top, /proc, /sys ...

KDB, KGDB,
crash/gdb +
/proc/kcore

VMM (out) Guest (out)
Printf, logfiles, -d (via guest

(tcg only) ... memory)
e.g. gemu + kvm (via gdb scripts)

traces

e.g. process QEMU guest

dump + gdb dump

oprofile/perf perf kvm

perf kvm stat, QEMU monitor
QEMU monitor

gdb gdbserver in
QEMU

\\/

reuse to debug the host

Debugging Technigues (3) - Problems with inbound
technigues

v

I
SURVIVED

OPEN

HEART
SELF - EiVi{€]=i4

Image source : http://kpc.am/1dZpT6f

Debugging Techniques (4) - Problems with inbound
technigues

= A (minimum) functional system is required (kexec ready and working)
= Availability and quality depends on guest OS
= Not all information accessible (or very hard to get / decompose)

= Early boot code

= [nterrupt handlers
= Restricted to guest OS (bootloader, (pc)bios)
= Not transparent to the guest

= Guest might behave differently when active
= Most have to be enabled/configured/installed before lightning strikes

-> Still very usefull for many debugging scenarios

lypull
||Ii"ii

Image source: https://pixabay.com/p-297580/?no_redirect (|l
9 ©2015 IBM Corporation 19. August 2015 | (|

Debugging Techniques (5) — perf kvm

E.g. perf kvm --host --guest —guestvmlinux=/boot/vmlinux-custom
--guestkallsyms=kallsyms top -e cpu-clock

system call /boot/vmlinux-custom

: 834K of event 'cpu-clock', Event count (approx.): 55230587977

Shared Object Symbol
75,59% [kernel] [K] enabled wait ENTRY (system_call) *
8,91% [guest.kernel] [g] system_call stpt __LC_SYNC_ENTER_TIMER
2,89% [quest.kernell] [g] fsnotify 65,47 stpt 688
1,93% [guest.kernel] [g] clear user .Lsysc_stmg:
1,17% [quest.kernel] [g] _ fsnotify_parent stmg %I8,%rl5, LC_SAVE_AREA_SYNC
1,10% [guest.kernel] [g] security file_permission 4,91 stmg %r8,%rl5,512
0,94% [guest.kernel] [g] vfs_write %rlo, LC LAST BREAK
0,94% [guest.kernel] [g] common_file_perm
0,86% [quest.kernel] [g] rw_verify_area 19 %rl2, LC_THREAD_INFO
0,77% [quest.kernell] [g] fget light 1g %rl2,792
0,74% [guest.kernel] [g] vfs_read lghi %rld, PIF_SYSCALL
0,67% [guest.kernel] [g] vfs read 0,29 lghi %rld4,1
0,59% [guest.kernel] [g] iov iter zero .Lsysc per:
for help on key bindings Press 'h' for help on key bindings

Take VCPU Add as guest

(event trigger) R PRSI sample sample
sample

Add as host

sample iy

10 ©2015 IBM Corporation ~ 19. August 2015 {lee]

11

Debugging Techniques (6) — gdbserver in QEMU

System 2

QEMU

nal SIGTI

ontinuing.
Program received signal SIGTRAP, Trace/breakpoint trap.

startup_kdump () at arch/s390/kernel/head.S:360 dbserver
(gdb) El'

(remote) GDB

Kernel / KVM

With KVM, hardware support is required for single-stepping,
break-/watchpoints

No extra disk space needed (in contrast to dumps)
Remote GDB side ,tracing“ possible but slow
Kernel with debug symbols only in remote GDB required

©2015 IBM Corporation 19. August 2015

12

Debugging Techniques (7) - which outbound technigue
might help?

» Crashes?

= QEMU dump, QEMU monitor or interactive debugging (,,big
guests®)

= Performance degredation?
= perf kvm stat / perf kvm
= |[nteractive debugging / guest tracing (after finding the hot spots)
= Incorrect behaviour?
= [nteractive debugging, guest tracing
= Deadlocks?
= |[nteractive debugging (esp. pause/step single threads/vcpus)
= Guest tracing
= Data Corruption?
= [nteractive debugging (esp. Watchpoints), guest tracing

©2015 IBM Corporation 19. August 2015

13

Advanced use cases

Debug scenarios that can barely be seen in real life
= Simulate and debug device error conditions

= £.g. on z Systems simulate cpu or device failures (TBD)

What happens if ... simulate bugs
= E£.g. overwrite return values from functions

-> see how the system reacts (e.g. driver failure)
Debug software for hardware that is not available yet
= E.9. new hardware bringup (requires hw emulation)

©2015 IBM Corporation 19. August 2015

Understand and fix bug reports without hardware at hand
= VM should behave like real hardware” (emulated devices)

Usage example (1): facility bug in early boot code

= No output, no error indication except bad PSW on KVM
= gemu-system-s390x -s -S -kernel /boot/vmlinux ...
= gdb /boot/vmlinux -tui -ex "target remote localhost:1234" -d ~/linux/

arch/s390/kernel/head. S

382 .insn s,0xbZbBEOGG, LC STFL FAC LIST # store facility list extended
383 # verify if all required facilities are supported by the machine
384 o: la %rl, LC STFL_FAC_LIST
385 la %r2,3f+8-.LPGO(%rl3)
386 1 %r3,0(%r2)
387 1: 1 %re,0(%rl)
388 n %re,4(%r2)
389 cl %re,4(%r2)
B+5] 2f
391 la %rl,4(%rl)
392 la %rz2,4(%r2)
393 ahi %r3,-1
394 inz 1b
395] 4f
b+ |§396 2 1 %rl5, .Lstack-.LPGO(%rl3)
397 ahi %rl5, -96
398 la %r2,.Lals_string-.LPGE(%rl3)
399 1 %r3, .Lsclp print-.LPGA(%rl3)
remote Thread 1 In: startup kdump L3290 PC: 0x100c2
(gdb) p /% $rl
$4 = Oxc8
(gdb) p /x $r2
$5 = 0x10148 i i
lgdo) p /x gee Analyze, single-step, break, modify ...

(gdb) set $cc=0
(gdb) p /x %$cc

$7 = Ox0

(gdb) [l

14 ©2015 IBM Corporation

19. August 2015

Usage example (1): facility bug in early boot code

= Early boot check for required facilities tested for a wrong one
= Current hardware typically has both facilities, KVM did not
-> Bug triggered only in KVM (not on test systems)

commit 4a36b44c77515calad799577d3f9e2fadd68bffa
Author: David Hildenbrand <dahi@linux.vnet.ibm.com>
Date: Wed Jun 18 12:32:19 2014 +0200

s390: require mvcos facility, not tod clock steering facility

#1T defined(CONFIG_64BIT)
#if defined(CONFIG_MARCH ZEC12)

.long 3, OxclOOefea, Oxf46ce800, Ox00400000
+ .long 3, OxclOOeff2, Oxf46ce800, Ox00400000
#elif defined(CONFIG_MARCH 7196)

.long 2, Oxcl0Oefea, Oxf46cO000
+ .long 2, OxclOOeff2, Oxf46cOO00
#elif defined(CONFIG MARCH Z710)

.long 2, OxclOOefea, OxTfO680000
+ .long 2, Oxcl0Beff2, OxfO680000
#elif defined(CONFIG MARCH Z9 109)

.long 1, OxclOBefc2

15 ©2015 IBM Corporation 19. August 2015

([T
’lEin-
[]|

!
(L]
[lom]]

Usage example (2): diag 44 in cpu_relax()

= Performance regression on new kernels
= Only visible on CPU overcommittement, many vcpus
= Long boot times, module loading extremely slow
= e.g. perf kvm state live -d 10
= Run same workload on old and new kernel
= Compare VM-EXIT / intercept results

Analyze events for all VMs, all VCPUs:

VM-EXIT Samples Samples% Time% Min Time Max Time
Wait state 8823 29.95% 99.36% 0.51us 4984120.42us
| DIAG (0x44) time slice end| 5884 19.97% 0.02% 0.90us 232.57us
SIGP emergency signal 5642 19.15% 0.03% 1.21lus 1162.31us
Host interruption 4053 13.76% 0.02% 0.33us 2145.47us
DIAG (0x9c) time slice end directed 2624 8.91% 0.01% 0.94us 112.85us
DIAG (0x500) KVM virtio functions 1477 5.01% 0.01% 1.01us 158.75us
Partial-execution 290 0.98% 0.00% 0.40us 12.88us
0xB2 SERVC 178 0.60% 0.02% 17.48us 5876.41lus
I/0 request 168 0.57% 0.00% 0.35us 13.52us
External request 79 0.27% 0.00% 0.41us 552.83us
0xB2 STSCH 79 0.27% 0.00% 4.17us 20.09us
SIGP 29 0.10% 0.00% 14.62us 103.66us
0xB2 SSCH 22 0.07% 0.00% 7.58us 178.29us
0xB2 TSCH 22 0.07% 0.00% 5,92us 41.46us
0xB2 STSI 13 0.04% 0.00% 0.76us 31.82us

16 ©2015 IBM Corporation 19. August 2015

Usage example (2): diag 44 in cpu_relax()

= diag 44" intercept == voluntarily give up time slice
= Number drastically changed
= All VCPUs waiting for all VCPUs in stop_machine()
= All VCPUs have to be scheduled once by the hypervisor
= [f VCPUs hand of time slices (diag 44), this happens much faster

commit 4d92f50249eb3edlc066276e214e8cc7be8le96d
Author: Heiko Carstens <heiko.carstens@de.ibm.com>
Date: Wed Jan 28 07:43:56 2015 +0100

s390: reintroduce diag 44 calls for cpu_relax()

_static inline void cpu_relax(void) *voild cpu_relax(void)

; +{
-{ barrier(): + 1if (!smp_cpu mtid && MACHINE HAS DIAG44)
-} + asm volatile("diag 0,0,0x44");
+void cpu_relax(void); +}barr1er();

+

+EXPORT_SYMBOL (cpu_relax) ;

=
||"||II
Tt

17 ©2015 IBM Corporation 19. August 2015 {lee]

Outlook

= Guest tracing
= QEMU gdbserver support missing (see Google Summer of Code)
= Requires at least support for single-stepping + breakpoints
= HW support?
= Live crash tool*
= Attach crash to a living remote target (QEMU's gdbserver)
= Convert crash features into gdb (python) scripts
= Support for more architectures + more hw support
= HW debugging: x86, s390x, powerpc supported — arm thd
= Allow to simulate more hardware varieties
= E.g. CPU models on z Systems
= Expose more ,fake” registers via QEMU's gdbserver
= e.g. z Systems ,last_break” -> ,where did | come from*

http.//wiki.qemu.org/Google_Summer_of Code 2012#Tracepoint_support_for_the gdbstub

18 ©2015 IBM Corporation 19. August 2015

Nyt
||II“ii
(1]
[lom]]

http://wiki.qemu.org/Google_Summer_of_Code_2012#Tracepoint_support_for_the_gdbstub

19

Tips and Tricks (1)

= Ways to start the QEMU gdbserver
= -s: Start it directly (can also be passed using libvirt)
= -5 -S: Start it, don't start the guest (continue using gdb or QEMU monitor)
= [azily using the QEMU monitor (gdbserver)
= Access the QEMU monitor using GDB ,monitor* command
-> QEMU monitor access when using libvirt possible
= Debug binaries without debugging symbols
= Architecture not announced via GDB remote protocol yet
= Use e.qg. "set arch s390:64-bit"
= Python bindings for GDB are really powerful
= E.g. connect two GDBs to verify on breakpoint level (e.g. between QEMUS)
= Debug loadable kernel modules
= getsyms.sh from kgdb
= Gdb scripts to be used in the remote GDB
= Linux kernel: Documentation/kdump/gdbmacros.txt

©2015 IBM Corporation 19. August 2015

Tips and Tricks (2): debug pcbios <-> kernel transition

boot / ipl

(load kernel from boot
device into ram)

bootindex

chreipl

(initial boot

h
device) (change

boot

reboot / reipl device)

(reload bios into ram)

Debug pchios code

Static ResetInfo save;

set_esame flag]

set cpuid to zero
mode 2 = esame (dump)
switch to esame mode

static void jump_to_IPL_2(void)

ResetInfo *current = 0;

void (*ipl)(void) = (void *) (uint64_t) current->ipl_continue;

it = save:

rorans,o(4r13) clear high-order half of gprs]
switch to 31 bit addressing
%r13,0 get base

}

static void jump_to_IPL_code (uint64_t address)
0x200(256), 0x200 partially clear lowcore
0x300(256) , 0x300
0x200(256) . 0xe00

/* store the subsystem infornation _after_ the bootmap vas loaded
subsysten identification();

Program received signal SIGTRAP, Trace/breakpoint trap. (gdb) <

furp. o, TPL_2"() at bootusp.c:43 Continuing

) 7 e y

gdb) x current->ipl_continue Progran received signal SIGTRAP, Trace/breskpolnt trap.
(8050 < Lowcaseesesies: 0x0ddo4170 startup_kdump () at arch/s390/kernel/head.s:

(gdb) step (gdb) Layout prev.

(geb) (geb) I

20 ©2015 IBM Corporation ~ 19. August 2015 ||""||

Tips and Tricks (2): debug pcbios <-> kernel transition

= Both code parts lie in guest memory and don't overlap
= pcbios overwrites kernel, kernel might overwrite pcbios
= Start gemu with the freshly compiled bios
gemu-system-s390x -s -S -bios ~/pcbios/s390-ccw/s390-ccw.elf ...
= Start the remote gdb with the kernel, specify both source dirs

gdb /boot/vmlinux -tui -ex "target remote localhost:1234 -d ~/linux/
-d ~/gemu/

= Tell gdb about the pcbios (symbols + loaded location)
add-symbol-file gemu/pc-bios/s390-ccw/s390-ccw.elf OX3FE00400
= Use hw breakpoints (reloading overwrites sw breakpoints)
hbreak jump_to IPL_2 [/ e.g. just before starting kernel code
hbreak *0x10014 /] depends on kernel code

(depends on gemu version, memory size and s390-ccw.elf, contact me for a calculation script)

21 ©2015 IBM Corporation 19. August 2015

Tips and Tricks (2): just before the transition

36 static ResetInfo save;

37

38 static void jump_to_IPL_2(void)

39 {

40 ResetInfo *current = 0;

41

42 void (*ip1l) (void) = (void *) (uint64_t) current->ipl_continue;
h+ |43 *current = save;

ipl(); /* should not return */

45 ¥

46

47 static void jump_to_IPL_code(uint64_t address)

438 {

49 /* store the subsystem information _after_ the bootmap was loaded *

50 write subszstem identification();

remote Thread 1 In: j L44 PC: 0x3feB0662

Program received signal SIGTRAP, Trace/breakpoint trap.
jump_to_IPL_2 () at bootmap.c:42

(gdb) step

(gdb) x current->ipl_continue

0xa050 <.lowcase+38918>: 0x0dd04170

(gdb) step

(gab)

22 ©2015 IBM Corporation 19. August 2015

Tips and Tricks (2): after the transition

358 j .Lep_startup_kdump
359 .Lep_startup normal:
>
361 slr %ro,%ro # set cpuid to zero
362 lhi %rl, 2 # mode 2 = esame (dump)
363 sigp %rl,%r0,0x12 # switch to esame mode
364 bras %rl3, of
365 il 16, 4,0x0
366 0: 1mh %r0,%rl5,0(%rl3) # clear high-order half of gprs
367 sam31 # switch to 31 bit addressing m
368 basr %rl3, 0 # get base
369 .LPGO:
370 Xc 0x200(256) , 0x200 # partially clear lowcore
371 Xc 0x300(256) ,0x300
372 XcC 0xe00(256), 0xe00
1

remote Thread 1 In: startup L3660 PC: 0x10014

(gdb) c
Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
startup_kdump () at arch/s390/kernel/head.S:360

(gdb) layout prev

(gdb) i

23 ©2015 IBM Corporation 19. August 2015

I .. —
| HE N S S
-_— I L v |
- L L& 4 |
| N N - ..

Thank youl!

david.hildenbrand@de.ibm.com

mailto:david.hildenbrand@de.ibm.com

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

BlueMix ECKD IBM* Maximo* Smarter Cities* WebSphere* z Systems
Biglnsights FICON* lom.com MQSeries* Smarter Analytics XIV* 2/VSE*
Cognos* FileNet* IBM (logo)* Performance Toolkit for VM SPSS* z13 z/NM*
DB2* FlashSystem IMS POWER* Storwize* zEnterprise*

DB2 Connect GDPS* Informix* Quickr* System Storage* z/OS*

Domino* GPFS InfoSphere Rational* Tivoli*

DS8000* Sametime*

* Registered trademarks of IBM Corporation
The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Windows Server and the Windows logo are trademarks of the Microsoft group of countries.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

* Other product and service names might be trademarks of IBM or other companies.

gt
||Ii"ii

[l
25 ©2015 IBM Corporation 19. August 2015 {lee]

	Guest operating system debugging
	Quotes
	Agenda
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

