
1

KVM Live Migration Optimization

Li, Liang Zhang, Yang

Aug 2015

2

Agenda

• Background

• Problems

• Solutions

• Performance

• Work in progress

3

Background

• Live migration usage in cloud computing
› facilitate maintenance

› load balancing

› energy saving

• Goals
› Reduce total live migration time

› Reduce VM down time

› Improve migration successful ratio

• Existing optimizations
› RDMA

› XBZRLE

› Auto convergence

4

Problems

• Network bandwidth could be the bottle neck
› Network is usually shared.

› 1Gbps Network is still widely used.

› Geographic migration

• Low efficient data processing in ram bulk stage
› Unused pages can be skipped

› Free pages can be skipped

› The transmission of zero pages can be skipped

• Time consuming operation in pause and copy stage
› migration_end

› blk_mig_cleanup

5

Solutions

• Multiple thread (de)compression

• Skip the unused pages in ram bulk stage

• Delay the non-emergency operations

6

Multiple thread (de)compression

• Time spend on different stages
› Most of the time is spent on sending data if the network bandwidth is low

• Time spend on different stages when using compression
› Compression can help to reduce the data traffic, and decrease time spend on sending data

› Compression takes extra time

› Multiple thread is used to accelerate the (de)compression process

Get dirty

page

Zero page

check
Send data

Compress page
Get dirty

page

Zero page

check

Send

compressed page

Get dirty

page

Zero page

check

Compress page

with multi-thread

Send

compressed page

7

Multiple thread (de)compression

• Multiple thread (de)compression is a new live migration feature
› Instead of sending the guest memory directly, this solution compresses the RAM page before

sending.

› Have been merged into QEMU 2.4.0.

• Relation ship between multiple thread (de)compression and XBZRLE
› Both aim for reduce the data traffic in network

› XBZRLE compresses the page updates.

› Multiple thread (de)compression compresses the original page.

› Multiple thread (de)compression transfers compressed data in the ram bulk stage,
XBZRLE can’t do that.

› Multiple thread co-work with XBZRLE can minimize the data traffic in theory.

› Multiple thread only takes effect in the ram bulk stage if co-work with XBZRLE.

8

Multiple thread (de)compression details

Compression thread

Wait to start

Do compression

Notify migration

thread

Wait to start

Notify migration

thread

Do compression

Compression thread

Notify compression

thread to start

Get page info

Wait for comp done if

all comp thread busy

Put the compressed

data to send buffer

Send data if

buffer is full

Migration thread

The relation ship between migration thread and compression threads

9

Multiple thread (de)compression details

QEMUFile buffer

Gest RAM pages

Head + compressed page

Copy Copy

Head +

compressed page

• About data copy
› Data copy happened when putting the compressed page to QEMUFile

• About page sequence
› In the block range, the sequence of the page is no matter

› If a new block begins, all the pages belong to the previous block should be
send out first.

10

Offload the overhead from CPU

• About the CPU usage?
› 760% on source side

› 50% on the source side when use the original implementation.

• Solutions
› Use some faster compression algorithm, like Quicklz, LZ4.

› Use hardware (de)compression accelerator to offload the over head from CPU. CPU usage can be

reduced more if using the asynchronous mode of the hardware (de)compression accelerator.

Zlib

8 threads

LZ4

8 threads

No

compression

CPU usage 760% 108% 51%

Total migration time (Sec) 20 20 34

Zlib Zlib with hardware accelerator

CPU usage 760% 150%

11

Skip unused pages in ram bulk stage

• Inefficient data processing in ram bulk stage
› Unused page can be skipped.

› Mark all pages as dirty will cause needless data process.

• How to
› Using a dirty page bitmap which just contains the used pages.

› Start the log dirty before VM running.

Current migration dirty page bitmap

Unused page

Used page

Optimized migration dirty page bitmap

12

Delay the non-emergency operations

• Do clean up operation after data transfer completion
› Delay migration_end.

› Delay blk_mig_cleanup.

13

Performance

• Performance of multiple thread (de)compression
Settings: speed limit No, Compress thread: 8, Decompress thread: 2, Compression level: 1, 1Gbps NIC, Guest RAM: 4G

› Idle guest

› Guest with workload writing random numbers to 1GB area of the memory periodically

Zlib Original way Multi-thread (de)Compression

total time (msec) 3333 1833 (↓45%)

downtime (msec) 100 27 (↓73%)

transferred ram(kB) 363536 107819 (↓70%)

total ram(kB) 4211524 4211524

Zlib Original way Multi-thread (de)Compression

total time (msec) 37369 15989(↓57%)

downtime (msec) 337 173(↓48%)

transferred ram(kB) 4274143 1699824(↓60%)

total ram(kB) 4211524 4211524

14

Performance

• Performance comparison between multiple thread and XBZRLE
› Migrating a guest with workload which writes random numbers to memory, LZ4 is used to do the

(de)compression.

Original

way

Multi-thread

(de)compression
XBZRLE

Multi-thread

(de)compression

& XBZRLE

total time (msec) 26746 14490 17590 13522

downtime (msec) 35 64 185 167

transferred ram(kB) 3354024 1784685 2131286 1605739

total ram(kB) 8405576 8405576 8405576 8405576

15

Performance

Before

optimization

After optimization

Total time(ms) 1386 483(↓65%)

Transferred ram(KB) 446542 428300

Total ram (KB) 8405576 8405576

• Performance for skipping unused pages in the ram bulk stage

Idle guest, 10Gbps NIC

16

Performance

Before optimization After optimization

Down time(ms) 38 6(↓84%)

Total ram (KB) 8405576 8405576

• Performance for delay the clean up operation

Test is based on QEMU 2.4.0 + Linux kernel 4.2-rc6, idle guest. Set max downtime 0.01S

17

Work in progress

• Improve the performance of multi-thread (de)compression in 10G
network environment.

› With the multi-thread (de)compression on, the performance is worse.

• Improve the performance of the hardware compression accelerator.
› Using the asynchronous mode instead of the synchronous mode.

• Using AVX instruction to accelerate zero page checking.

• User space network stack
› Live migration based on DPDK & mTCP

• Live migration performance optimization for the 40Gbps network

Q&A?

Thank You

