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Background

• Live migration usage in cloud computing
› facilitate maintenance

› load balancing

› energy saving

• Goals
› Reduce total live migration time

› Reduce VM down time

› Improve migration successful ratio

• Existing optimizations
› RDMA

› XBZRLE

› Auto convergence
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Problems

• Network bandwidth could be the bottle neck
› Network is usually shared. 

› 1Gbps Network is still widely used.

› Geographic migration

• Low efficient data processing in ram bulk stage
› Unused pages can be skipped

› Free pages can be skipped

› The transmission of zero pages can be skipped

• Time consuming operation in pause and copy stage
› migration_end

› blk_mig_cleanup
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Solutions

• Multiple thread (de)compression

• Skip the unused pages in ram bulk stage

• Delay the non-emergency operations
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Multiple thread (de)compression

• Time spend on different stages
› Most of the time  is spent on sending data if the network bandwidth is low

• Time spend on different stages when using compression
› Compression can help to reduce the data traffic, and decrease time spend on sending data

› Compression takes extra time 

› Multiple thread is used to accelerate the (de)compression process
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Multiple thread (de)compression

• Multiple thread (de)compression is a new live migration feature
› Instead of sending the guest memory directly, this solution compresses the RAM page before 

sending.

› Have been merged into QEMU 2.4.0.

• Relation ship between multiple thread (de)compression and XBZRLE
› Both aim for reduce the data traffic in network

› XBZRLE compresses the page updates.

› Multiple thread (de)compression compresses the original page.

› Multiple thread (de)compression transfers compressed data in the ram bulk stage, 
XBZRLE can’t do that.

› Multiple thread co-work with XBZRLE can minimize the data traffic in theory.

› Multiple thread only takes effect in the ram bulk stage if co-work with XBZRLE.
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Multiple thread (de)compression details

Compression thread
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Multiple thread (de)compression details

QEMUFile buffer

Gest RAM pages

Head + compressed page

Copy Copy 

Head + 

compressed page

• About data copy
› Data copy happened when putting the compressed page to QEMUFile

• About page sequence
› In the block range, the sequence of the page is no matter

› If a new block begins, all the pages belong to the previous block should be  
send out first.
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Offload the overhead from CPU

• About the CPU usage? 
› 760% on source side

› 50% on the source side when use the original implementation.

• Solutions
› Use some faster compression algorithm, like Quicklz, LZ4.

› Use hardware (de)compression accelerator to offload the over head from CPU. CPU usage can be 

reduced more if using the asynchronous mode of the hardware (de)compression accelerator.

Zlib

8 threads

LZ4

8 threads

No

compression

CPU usage 760% 108% 51%

Total migration time (Sec) 20 20 34

Zlib Zlib with hardware accelerator 

CPU usage 760% 150%
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Skip unused pages in ram bulk stage

• Inefficient data processing in ram bulk stage
› Unused page can be skipped.

› Mark all pages as dirty will cause needless data process.

• How to
› Using a dirty page bitmap which just contains the used pages.

› Start the log dirty before VM running.

Current migration dirty page bitmap

Unused page

Used page

Optimized migration dirty page bitmap
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Delay the non-emergency operations

• Do clean up operation after data transfer completion
› Delay migration_end.

› Delay blk_mig_cleanup.
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Performance

• Performance of multiple thread (de)compression
Settings: speed limit No, Compress thread: 8, Decompress thread: 2, Compression level: 1, 1Gbps NIC, Guest RAM: 4G

› Idle guest

› Guest with workload writing random numbers to 1GB area of the memory periodically

Zlib Original way Multi-thread (de)Compression

total time (msec) 3333    1833  (↓45%)

downtime (msec) 100 27  (↓73%)

transferred ram(kB) 363536 107819 (↓70%)

total ram(kB) 4211524  4211524  

Zlib Original way Multi-thread (de)Compression

total time (msec) 37369  15989(↓57%)

downtime (msec) 337 173(↓48%)

transferred ram(kB) 4274143 1699824(↓60%)

total ram(kB) 4211524  4211524  



14

Performance

• Performance comparison between multiple thread and XBZRLE
› Migrating a guest with workload which writes random numbers to memory, LZ4 is used to do the 

(de)compression.

Original 

way

Multi-thread 

(de)compression
XBZRLE

Multi-thread 

(de)compression 

& XBZRLE

total time (msec) 26746 14490 17590 13522

downtime (msec) 35 64 185 167

transferred ram(kB) 3354024 1784685 2131286 1605739

total ram(kB) 8405576  8405576 8405576  8405576
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Performance

Before 

optimization

After optimization

Total time(ms) 1386 483(↓65%)

Transferred ram(KB) 446542 428300

Total ram (KB) 8405576 8405576

• Performance for skipping unused pages in the ram bulk stage

Idle guest, 10Gbps NIC
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Performance

Before optimization After optimization

Down time(ms) 38 6(↓84%)

Total ram (KB) 8405576 8405576

• Performance for delay the clean up operation

Test is based on QEMU 2.4.0 + Linux kernel 4.2-rc6, idle guest. Set max downtime 0.01S
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Work in progress

• Improve the performance of multi-thread (de)compression in 10G 
network environment.

› With the multi-thread (de)compression on, the performance is worse. 

• Improve the performance of the hardware compression accelerator.
› Using the asynchronous mode instead of the synchronous mode.

• Using AVX instruction to accelerate zero page checking.

• User space network stack
› Live migration based on DPDK & mTCP

• Live migration performance optimization for the 40Gbps network 
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