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● New Chip (Zynq NG)

● Aggressive target for QEMU as early SW 

platform emulating WiP chip

●  BootROMs, Boot-loaders, Firmware, 

Hypervisors, OS ports etc

● Schedules and Secrecy

● QEMU is fast and scales to large user-

base compared to RTL based simulations

ZynqMP SoC



  

● John Williams and Peter Ryser

● Peter C, Alistair Francis, Sai Pavan

Thanks Xilinx



  

 



  

● Flat Device Tree

● Devices matched with compat props

● Links between devs

●  DMA stream connections

● GPIOs, Interrupts, Memory Regions, etc

● Issue: QEMU specific device-tree

● Started simple but improved by Peter C 

and others QoM related work

Machine description



  

 

Simplified bus approximation



  

 

PMA -  Per Master AddressSpace(s)

● Per CPU AdressSpaces

● Useful to avoid and easily debug DMA 

related AS errors

● Memory regions are described in FDT 

syntax

● Common setup mechanism for devs/cpus 

missing upstream

● Multiple AS:s per CPU (Maydell)



  

 

Cortex A53 and Cortex R5



  

 

Cortex A53 ARMv8

● Thanks to Alexander Graf, Peter Maydell 

and others EL1 and EL0 were functional 

and quite stable

● Kernel and User-space



  

 

A53 Software stack
  EL3 and 2 missing



  

 

EL3 and EL2

● Xilinx focused on AArch64 modes

● GIC virtualization, virtual interrupts, 2-

stage MMU, exception model, virtual 

timers

● Community effort (Maydell, Greg, Fabian, 

Sergey and more)

● Still lots missing upstream (Huge spec)

● Xilinx tree limited but runs emulated 

XEN/KVM/ATF



  

 

Bus approximation
   MemAttrs NS, MasterID, etc



  

 

Memory Attributes

● AS based first attempt

● Very messy with the IOMMUs

● Xilinx MemAttr changes to the MemAPI

● Peter Maydell did a better implementation of 

the same that eventually got merged

● Xilinx: MemAttrs are QoM objects, making it 

easy to create them and assign them with 

FDT syntax



  

 

Model of IOMMUs

● ARM SMMU model (limited and fixed cfg)

● R5s and Control processors are behind the 

IOMMUs

● Turned out to be fairly complex but also very 

helpful in SW driver bring-up

● Helped find and fix errors in the XEN 

SMMU drivers and in our RTL!



  

 

Bus approximation: Multi-arch?



  

 

Multi-arch

● June 2013

● QEMU didn't seem to be close enough for 

single build with multi-arch (Despite good 

efforts from multiple people including 

Andreas F)

● Looking ahead, MMTCG and MultiArch look 

promising



  

 

Remote-Port

● QEMU to QEMU proxy

● First prototype based on hacked Qtest

● Binary protocol using shared memory maps 

for RAM sharing

● RP devices, bus master, bus slave, GPIO, 

DMA Stream, core (setup, sync, atomic ops)

● Multiple QEMUs run in parallel

● Keep it simple, one big QEMU, a few tiny 

remote ones attaching CPUs and mostly IRQs. 



  

 

Bus approximation: Remote Port



  

 

Remote-Port

● RAMs are mapped SHARED into all instances (-

mem-path)

● Bus accesses, interrupts, sync and DMA-stream 

are forwarded over sockets

● Atomic ops are done with IPC semaphores 

(translators need modifications)

● TLB flushes for inter-core code modifications not 

supported (could be implemented but hasn't been 

needed yet..). 



  

 



  

 

SystemC / TLM

● SystemC, C++ class libs for simulating systems 

● TLM: Inter-operability extensions for connecting 

models from different vendors into a larger 

system

● OpenSource simulator from OSCI

● Increasingly used by chip design teams

● Acts as a glue/binding between models written 

in different languages (e.g Verilog, VHDL, C, etc)



  

 



  

 

SystemC / TLM

● QEMU runs with Icount

● Timer based sync-calls stops QEMU from 

running to far a head of time (configurable 

quantum)

● Time-scaling and warping may be used to 

trade real-time experience vs accuracy



  

 

Verilator

● Open Source Verilog to SystemC (or C++) 

compiler

● Generated SystemC easily integrated into 

SystemC/TLM.

● It all runs with free tools QEMU, OSCIs 

OpenSource SystemC sim, Verilator, gtkwave.



  

 

Tools binary tracing

● Qemu-etrace

● Binary trace emitted by QEMU

● Exec, gpio, mem, asm

● Processed by external tool

● Post-process trace files

● Live processing via unix sockets



  

 

Tools etrace

● Qemu-etrace

● Decode traces into human readable form

● Load ELF files to provide symbol info

● Collects code coverage statistics mapping 

executed addresses back into source code 

lines by reverse lookup of debug info

● Emits lcov info files, lcovs genhtml can 

then generate nice HTML reports



  

 

Debugging

● GDB session break driven by 

LOG_GUEST_ERROR

● ARMv8 specific extensions

● easily switch virtual memory view between Els

● Access to more sysregs

● A64/A32 Reg mapping hacks

● Issues: We have problems with the runstate 

control in GDB. (Run a specific core for a while 

etc)



  

 

Qtesting

● Qtest with TCG CPUs

● Python classes

●  QEMU.apu.bus32[0x1000] = 0xa0

●  Val = QEMU.apu.bus16[0x1000]

●  QEMU.set_irq(name, val)

● Scripted tests for embedded SW

● Corner cases, HW errors, etc



  

 

Model autogen

● Data driven register decode/accesses

● Common practice in RTL design

● Auto-generate RTL, C header files, 

documentation from a single source of reg 

description

● We extended this to generate QEMU 

skeletons for models

● Identify patterns and auto-generate 

interrupt controllers / logic



  

 

Questions

 Thanks for listening
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