

QEMU for Xilinx
ZynqMP

Edgar E. Iglesias <edgar.iglesias@xilinx.com> V2 2015-Aug-20

mailto:edgar.iglesias@xilinx.com

● New Chip (Zynq NG)

● Aggressive target for QEMU as early SW

platform emulating WiP chip

● BootROMs, Boot-loaders, Firmware,

Hypervisors, OS ports etc

● Schedules and Secrecy

● QEMU is fast and scales to large user-

base compared to RTL based simulations

ZynqMP SoC

● John Williams and Peter Ryser

● Peter C, Alistair Francis, Sai Pavan

Thanks Xilinx

● Flat Device Tree

● Devices matched with compat props

● Links between devs

● DMA stream connections

● GPIOs, Interrupts, Memory Regions, etc

● Issue: QEMU specific device-tree

● Started simple but improved by Peter C

and others QoM related work

Machine description

Simplified bus approximation

PMA - Per Master AddressSpace(s)

● Per CPU AdressSpaces

● Useful to avoid and easily debug DMA

related AS errors

● Memory regions are described in FDT

syntax

● Common setup mechanism for devs/cpus

missing upstream

● Multiple AS:s per CPU (Maydell)

Cortex A53 and Cortex R5

Cortex A53 ARMv8

● Thanks to Alexander Graf, Peter Maydell

and others EL1 and EL0 were functional

and quite stable

● Kernel and User-space

A53 Software stack
 EL3 and 2 missing

EL3 and EL2

● Xilinx focused on AArch64 modes

● GIC virtualization, virtual interrupts, 2-

stage MMU, exception model, virtual

timers

● Community effort (Maydell, Greg, Fabian,

Sergey and more)

● Still lots missing upstream (Huge spec)

● Xilinx tree limited but runs emulated

XEN/KVM/ATF

Bus approximation
 MemAttrs NS, MasterID, etc

Memory Attributes

● AS based first attempt

● Very messy with the IOMMUs

● Xilinx MemAttr changes to the MemAPI

● Peter Maydell did a better implementation of

the same that eventually got merged

● Xilinx: MemAttrs are QoM objects, making it

easy to create them and assign them with

FDT syntax

Model of IOMMUs

● ARM SMMU model (limited and fixed cfg)

● R5s and Control processors are behind the

IOMMUs

● Turned out to be fairly complex but also very

helpful in SW driver bring-up

● Helped find and fix errors in the XEN

SMMU drivers and in our RTL!

Bus approximation: Multi-arch?

Multi-arch

● June 2013

● QEMU didn't seem to be close enough for

single build with multi-arch (Despite good

efforts from multiple people including

Andreas F)

● Looking ahead, MMTCG and MultiArch look

promising

Remote-Port

● QEMU to QEMU proxy

● First prototype based on hacked Qtest

● Binary protocol using shared memory maps

for RAM sharing

● RP devices, bus master, bus slave, GPIO,

DMA Stream, core (setup, sync, atomic ops)

● Multiple QEMUs run in parallel

● Keep it simple, one big QEMU, a few tiny

remote ones attaching CPUs and mostly IRQs.

Bus approximation: Remote Port

Remote-Port

● RAMs are mapped SHARED into all instances (-

mem-path)

● Bus accesses, interrupts, sync and DMA-stream

are forwarded over sockets

● Atomic ops are done with IPC semaphores

(translators need modifications)

● TLB flushes for inter-core code modifications not

supported (could be implemented but hasn't been

needed yet..).

SystemC / TLM

● SystemC, C++ class libs for simulating systems

● TLM: Inter-operability extensions for connecting

models from different vendors into a larger

system

● OpenSource simulator from OSCI

● Increasingly used by chip design teams

● Acts as a glue/binding between models written

in different languages (e.g Verilog, VHDL, C, etc)

SystemC / TLM

● QEMU runs with Icount

● Timer based sync-calls stops QEMU from

running to far a head of time (configurable

quantum)

● Time-scaling and warping may be used to

trade real-time experience vs accuracy

Verilator

● Open Source Verilog to SystemC (or C++)

compiler

● Generated SystemC easily integrated into

SystemC/TLM.

● It all runs with free tools QEMU, OSCIs

OpenSource SystemC sim, Verilator, gtkwave.

Tools binary tracing

● Qemu-etrace

● Binary trace emitted by QEMU

● Exec, gpio, mem, asm

● Processed by external tool

● Post-process trace files

● Live processing via unix sockets

Tools etrace

● Qemu-etrace

● Decode traces into human readable form

● Load ELF files to provide symbol info

● Collects code coverage statistics mapping

executed addresses back into source code

lines by reverse lookup of debug info

● Emits lcov info files, lcovs genhtml can

then generate nice HTML reports

Debugging

● GDB session break driven by

LOG_GUEST_ERROR

● ARMv8 specific extensions

● easily switch virtual memory view between Els

● Access to more sysregs

● A64/A32 Reg mapping hacks

● Issues: We have problems with the runstate

control in GDB. (Run a specific core for a while

etc)

Qtesting

● Qtest with TCG CPUs

● Python classes

● QEMU.apu.bus32[0x1000] = 0xa0

● Val = QEMU.apu.bus16[0x1000]

● QEMU.set_irq(name, val)

● Scripted tests for embedded SW

● Corner cases, HW errors, etc

Model autogen

● Data driven register decode/accesses

● Common practice in RTL design

● Auto-generate RTL, C header files,

documentation from a single source of reg

description

● We extended this to generate QEMU

skeletons for models

● Identify patterns and auto-generate

interrupt controllers / logic

Questions

 Thanks for listening

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

