
QEMU interface introspection:
From hacks to solutions

Markus Armbruster <armbru@redhat.com>
KVM Forum 2015

Part I
What’s the problem?

Interfacing with QEMU
QEMU provides interfaces

QMP Monitor
Command line

to management applications like libvirt

QEMU evolves rapidly
Many interface versions

Our command line is big

In v2.4:
139 total options
-14 deprecated
-2 internal use

123 supported options

If I had a coin for each of them. . .
0.5

7kg

It’s big: output of -help

QEMU emulator version 2.3.93, Copyright (c) 2003-2008 Fabrice Bellard
usage: upstream-qemu [options] [disk_image]

’disk_image’ is a raw hard disk image for IDE hard disk 0

Standard options:
-h or -help display this help and exit
-version display version information and exit
-machine [type=]name[,prop[=value][,...]]

selects emulated machine (’-machine help’ for list)
property accel=accel1[:accel2[:...]] selects accelerator
supported accelerators are kvm, xen, tcg (default: tcg)
kernel_irqchip=on|off controls accelerated irqchip support
vmport=on|off|auto controls emulation of vmport (default: auto)
kvm_shadow_mem=size of KVM shadow MMU
dump-guest-core=on|off include guest memory in a core dump (default=on)
mem-merge=on|off controls memory merge support (default: on)
iommu=on|off controls emulated Intel IOMMU (VT-d) support (default=off)
aes-key-wrap=on|off controls support for AES key wrapping (default=on)
dea-key-wrap=on|off controls support for DEA key wrapping (default=on)
suppress-vmdesc=on|off disables self-describing migration (default=off)

-cpu cpu select CPU (’-cpu help’ for list)
-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]

set the number of CPUs to ’n’ [default=1]
maxcpus= maximum number of total cpus, including
offline CPUs for hotplug, etc
cores= number of CPU cores on one socket
threads= number of threads on one CPU core
sockets= number of discrete sockets in the system

-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]
-numa node[,memdev=id][,cpus=cpu[-cpu]][,nodeid=node]
-add-fd fd=fd,set=set[,opaque=opaque]

Add ’fd’ to fd ’set’
-set group.id.arg=value

set <arg> parameter for item <id> of type <group>
i.e. -set drive.$id.file=/path/to/image

-global driver.property=value
-global driver=driver,property=property,value=value

set a global default for a driver property
-boot [order=drives][,once=drives][,menu=on|off]

[,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]
’drives’: floppy (a), hard disk (c), CD-ROM (d), network (n)
’sp_name’: the file’s name that would be passed to bios as logo picture, if menu=on
’sp_time’: the period that splash picture last if menu=on, unit is ms
’rb_timeout’: the timeout before guest reboot when boot failed, unit is ms

-m[emory] [size=]megs[,slots=n,maxmem=size]
configure guest RAM
size: initial amount of guest memory
slots: number of hotplug slots (default: none)
maxmem: maximum amount of guest memory (default: none)

NOTE: Some architectures might enforce a specific granularity
-mem-path FILE provide backing storage for guest RAM
-mem-prealloc preallocate guest memory (use with -mem-path)
-k language use keyboard layout (for example ’fr’ for French)
-audio-help print list of audio drivers and their options
-soundhw c1,... enable audio support

and only specified sound cards (comma separated list)
use ’-soundhw help’ to get the list of supported cards
use ’-soundhw all’ to enable all of them

-balloon none disable balloon device
-balloon virtio[,addr=str]

enable virtio balloon device (default)
-device driver[,prop[=value][,...]]

add device (based on driver)
prop=value,... sets driver properties
use ’-device help’ to print all possible drivers
use ’-device driver,help’ to print all possible properties

-name string1[,process=string2][,debug-threads=on|off]
set the name of the guest
string1 sets the window title and string2 the process name (on Linux)
When debug-threads is enabled, individual threads are given a separate name (on Linux)
NOTE: The thread names are for debugging and not a stable API.

-uuid %08x-%04x-%04x-%04x-%012x
specify machine UUID

Block device options:
-fda/-fdb file use ’file’ as floppy disk 0/1 image
-hda/-hdb file use ’file’ as IDE hard disk 0/1 image
-hdc/-hdd file use ’file’ as IDE hard disk 2/3 image
-cdrom file use ’file’ as IDE cdrom image (cdrom is ide1 master)
-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]

[,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]
[,cache=writethrough|writeback|none|directsync|unsafe][,format=f]
[,serial=s][,addr=A][,rerror=ignore|stop|report]
[,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]
[,readonly=on|off][,copy-on-read=on|off]
[,discard=ignore|unmap][,detect-zeroes=on|off|unmap]
[[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]
[[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]
[[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]
[[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]
[[,iops_size=is]]
[[,group=g]]

use ’file’ as a drive image
-mtdblock file use ’file’ as on-board Flash memory image
-sd file use ’file’ as SecureDigital card image
-pflash file use ’file’ as a parallel flash image
-snapshot write to temporary files instead of disk image files
-hdachs c,h,s[,t]

force hard disk 0 physical geometry and the optional BIOS
translation (t=none or lba) (usually QEMU can guess them)

-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]
[,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]

-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]
[,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]

-virtfs_synth Create synthetic file system image

USB options:
-usb enable the USB driver (will be the default soon)
-usbdevice name add the host or guest USB device ’name’

Display options:
-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]

[,window_close=on|off]|curses|none|
gtk[,grab_on_hover=on|off]|
vnc=<display>[,<optargs>]

select display type
-nographic disable graphical output and redirect serial I/Os to console
-curses use a curses/ncurses interface instead of SDL
-no-frame open SDL window without a frame and window decorations

-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)
-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)
-no-quit disable SDL window close capability
-sdl enable SDL
-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]

[,x509-key-file=<file>][,x509-key-password=<file>]
[,x509-cert-file=<file>][,x509-cacert-file=<file>]
[,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]
[,tls-ciphers=<list>]
[,tls-channel=[main|display|cursor|inputs|record|playback]]
[,plaintext-channel=[main|display|cursor|inputs|record|playback]]
[,sasl][,password=<secret>][,disable-ticketing]
[,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]
[,jpeg-wan-compression=[auto|never|always]]
[,zlib-glz-wan-compression=[auto|never|always]]
[,streaming-video=[off|all|filter]][,disable-copy-paste]
[,disable-agent-file-xfer][,agent-mouse=[on|off]]
[,playback-compression=[on|off]][,seamless-migration=[on|off]]

enable spice
at least one of {port, tls-port} is mandatory

-portrait rotate graphical output 90 deg left (only PXA LCD)
-rotate <deg> rotate graphical output some deg left (only PXA LCD)
-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]

select video card type
-full-screen start in full screen
-vnc display start a VNC server on display

i386 target only:
-win2k-hack use it when installing Windows 2000 to avoid a disk full bug
-no-fd-bootchk disable boot signature checking for floppy disks
-no-acpi disable ACPI
-no-hpet disable HPET
-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n]

[,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]
ACPI table description

-smbios file=binary
load SMBIOS entry from binary file

-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]
[,uefi=on|off]

specify SMBIOS type 0 fields
-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]

[,uuid=uuid][,sku=str][,family=str]
specify SMBIOS type 1 fields

-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]
[,asset=str][,location=str]

specify SMBIOS type 2 fields
-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]

[,sku=str]
specify SMBIOS type 3 fields

-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]
[,asset=str][,part=str]

specify SMBIOS type 4 fields
-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]

[,asset=str][,part=str][,speed=%d]
specify SMBIOS type 17 fields

Network options:
-netdev user,id=str[,net=addr[/mask]][,host=addr][,restrict=on|off]

[,hostname=host][,dhcpstart=addr][,dns=addr][,dnssearch=domain][,tftp=dir]
[,bootfile=f][,hostfwd=rule][,guestfwd=rule][,smb=dir[,smbserver=addr]]

configure a user mode network backend with ID ’str’,
its DHCP server and optional services

-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]
[,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]
[,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]

configure a host TAP network backend with ID ’str’
use network scripts ’file’ (default=/etc/qemu-ifup)
to configure it and ’dfile’ (default=/etc/qemu-ifdown)
to deconfigure it
use ’[down]script=no’ to disable script execution
use network helper ’helper’ (default=/usr/local/libexec/qemu-bridge-helper) to
configure it
use ’fd=h’ to connect to an already opened TAP interface
use ’fds=x:y:...:z’ to connect to already opened multiqueue capable TAP interfaces
use ’sndbuf=nbytes’ to limit the size of the send buffer (the
default is disabled ’sndbuf=0’ to enable flow control set ’sndbuf=1048576’)
use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag
use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition
use vhost=on to enable experimental in kernel accelerator

(only has effect for virtio guests which use MSIX)
use vhostforce=on to force vhost on for non-MSIX virtio guests
use ’vhostfd=h’ to connect to an already opened vhost net device
use ’vhostfds=x:y:...:z to connect to multiple already opened vhost net devices
use ’queues=n’ to specify the number of queues to be created for multiqueue TAP

-netdev bridge,id=str[,br=bridge][,helper=helper]
configure a host TAP network backend with ID ’str’ that is
connected to a bridge (default=br0)
using the program ’helper (default=/usr/local/libexec/qemu-bridge-helper)

-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]
[,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]
[,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]
[,rxcookie=rxcookie][,offset=offset]

configure a network backend with ID ’str’ connected to
an Ethernet over L2TPv3 pseudowire.
Linux kernel 3.3+ as well as most routers can talk
L2TPv3. This transport allows connecting a VM to a VM,
VM to a router and even VM to Host. It is a nearly-universal
standard (RFC3391). Note - this implementation uses static
pre-configured tunnels (same as the Linux kernel).
use ’src=’ to specify source address
use ’dst=’ to specify destination address
use ’udp=on’ to specify udp encapsulation
use ’srcport=’ to specify source udp port
use ’dstport=’ to specify destination udp port
use ’ipv6=on’ to force v6
L2TPv3 uses cookies to prevent misconfiguration as
well as a weak security measure
use ’rxcookie=0x012345678’ to specify a rxcookie
use ’txcookie=0x012345678’ to specify a txcookie
use ’cookie64=on’ to set cookie size to 64 bit, otherwise 32
use ’counter=off’ to force a ’cut-down’ L2TPv3 with no counter
use ’pincounter=on’ to work around broken counter handling in peer
use ’offset=X’ to add an extra offset between header and data

-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]
configure a network backend to connect to another network
using a socket connection

-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]
configure a network backend to connect to a multicast maddr and port
use ’localaddr=addr’ to specify the host address to send packets from

-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]

configure a network backend to connect to another network
using an UDP tunnel

-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]
configure a vhost-user network, backed by a chardev ’dev’

-netdev hubport,id=str,hubid=n
configure a hub port on QEMU VLAN ’n’

-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]
old way to create a new NIC and connect it to VLAN ’n’
(use the ’-device devtype,netdev=str’ option if possible instead)

-net dump[,vlan=n][,file=f][,len=n]
dump traffic on vlan ’n’ to file ’f’ (max n bytes per packet)

-net none use it alone to have zero network devices. If no -net option
is provided, the default is ’-net nic -net user’

-net [user|tap|bridge|socket][,vlan=n][,option][,option][,...]
old way to initialize a host network interface
(use the -netdev option if possible instead)

Character device options:
-chardev null,id=id[,mux=on|off]
-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]

[,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off] (tcp)
-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off] (unix)
-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]

[,localport=localport][,ipv4][,ipv6][,mux=on|off]
-chardev msmouse,id=id[,mux=on|off]
-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]

[,mux=on|off]
-chardev ringbuf,id=id[,size=size]
-chardev file,id=id,path=path[,mux=on|off]
-chardev pipe,id=id,path=path[,mux=on|off]
-chardev pty,id=id[,mux=on|off]
-chardev stdio,id=id[,mux=on|off][,signal=on|off]
-chardev braille,id=id[,mux=on|off]
-chardev serial,id=id,path=path[,mux=on|off]
-chardev tty,id=id,path=path[,mux=on|off]
-chardev parallel,id=id,path=path[,mux=on|off]
-chardev parport,id=id,path=path[,mux=on|off]
-chardev spicevmc,id=id,name=name[,debug=debug]
-chardev spiceport,id=id,name=name[,debug=debug]

Device URL Syntax:
-iscsi [user=user][,password=password]

[,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE
[,initiator-name=initiator-iqn][,id=target-iqn]
[,timeout=timeout]

iSCSI session parameters
Bluetooth(R) options:
-bt hci,null dumb bluetooth HCI - doesn’t respond to commands
-bt hci,host[:id]

use host’s HCI with the given name
-bt hci[,vlan=n]

emulate a standard HCI in virtual scatternet ’n’
-bt vhci[,vlan=n]

add host computer to virtual scatternet ’n’ using VHCI
-bt device:dev[,vlan=n]

emulate a bluetooth device ’dev’ in scatternet ’n’

TPM device options:
-tpmdev passthrough,id=id[,path=path][,cancel-path=path]

use path to provide path to a character device; default is /dev/tpm0
use cancel-path to provide path to TPM’s cancel sysfs entry; if
not provided it will be searched for in /sys/class/misc/tpm?/device

Linux/Multiboot boot specific:
-kernel bzImage use ’bzImage’ as kernel image
-append cmdline use ’cmdline’ as kernel command line
-initrd file use ’file’ as initial ram disk
-dtb file use ’file’ as device tree image

Debug/Expert options:
-fw_cfg [name=]<name>,file=<file>

add named fw_cfg entry from file
-serial dev redirect the serial port to char device ’dev’
-parallel dev redirect the parallel port to char device ’dev’
-monitor dev redirect the monitor to char device ’dev’
-qmp dev like -monitor but opens in ’control’ mode
-qmp-pretty dev like -qmp but uses pretty JSON formatting
-mon [chardev=]name[,mode=readline|control][,default]
-debugcon dev redirect the debug console to char device ’dev’
-pidfile file write PID to ’file’
-singlestep always run in singlestep mode
-S freeze CPU at startup (use ’c’ to start execution)
-realtime [mlock=on|off]

run qemu with realtime features
mlock=on|off controls mlock support (default: on)

-gdb dev wait for gdb connection on ’dev’
-s shorthand for -gdb tcp::1234
-d item1,... enable logging of specified items (use ’-d help’ for a list of log items)
-D logfile output log to logfile (default stderr)
-L path set the directory for the BIOS, VGA BIOS and keymaps
-bios file set the filename for the BIOS
-enable-kvm enable KVM full virtualization support
-xen-domid id specify xen guest domain id
-xen-create create domain using xen hypercalls, bypassing xend

warning: should not be used when xend is in use
-xen-attach attach to existing xen domain

xend will use this when starting QEMU
-no-reboot exit instead of rebooting
-no-shutdown stop before shutdown
-loadvm [tag|id]

start right away with a saved state (loadvm in monitor)
-daemonize daemonize QEMU after initializing
-option-rom rom load a file, rom, into the option ROM space
-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]

set the RTC base and clock, enable drift fix for clock ticks (x86 only)
-icount [shift=N|auto][,align=on|off][,sleep=no]

enable virtual instruction counter with 2^N clock ticks per
instruction, enable aligning the host and virtual clocks
or disable real time cpu sleeping

-watchdog model
enable virtual hardware watchdog [default=none]

-watchdog-action reset|shutdown|poweroff|pause|debug|none
action when watchdog fires [default=reset]

-echr chr set terminal escape character instead of ctrl-a
-virtioconsole c

set virtio console
-show-cursor show cursor
-tb-size n set TB size
-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]
-incoming rdma:host:port[,ipv4][,ipv6]

-incoming rdma:host:port[,ipv4][,ipv6]
-incoming unix:socketpath

prepare for incoming migration, listen on
specified protocol and socket address

-incoming fd:fd
-incoming exec:cmdline

accept incoming migration on given file descriptor
or from given external command

-incoming defer
wait for the URI to be specified via migrate_incoming

-nodefaults don’t create default devices
-chroot dir chroot to dir just before starting the VM
-runas user change to user id user just before starting the VM
-sandbox <arg> Enable seccomp mode 2 system call filter (default ’off’).
-readconfig <file>
-writeconfig <file>

read/write config file
-nodefconfig

do not load default config files at startup
-no-user-config

do not load user-provided config files at startup
-trace [events=<file>][,file=<file>]

specify tracing options
-enable-fips enable FIPS 140-2 compliance
-msg timestamp[=on|off]

change the format of messages
on|off controls leading timestamps (default:on)

-dump-vmstate <file>
Output vmstate information in JSON format to file.
Use the scripts/vmstate-static-checker.py file to
check for possible regressions in migration code
by comparing two such vmstate dumps.Generic object creation

-object TYPENAME[,PROP1=VALUE1,...]
create a new object of type TYPENAME setting properties
in the order they are specified. Note that the ’id’
property must be set. These objects are placed in the
’/objects’ path.

During emulation, the following keys are useful:
ctrl-alt-f toggle full screen
ctrl-alt-n switch to virtual console ’n’
ctrl-alt toggle mouse and keyboard grab

When using -nographic, press ’ctrl-a h’ to get some help.

Really big: its manual section
Chapter 3: QEMU PC System emulator 5

3.3 Invocation

usage: qemu-system-i386 [options] [disk_image]

disk image is a raw hard disk image for IDE hard disk 0. Some targets do not need a disk
image.

Standard options:

-h Display help and exit

-version Display version information and exit

-machine [type=]name[,prop=value[,...]]

Select the emulated machine by name. Use -machine help to list available
machines. Supported machine properties are:

accel=accels1[:accels2[:...]]

This is used to enable an accelerator. Depending on the target
architecture, kvm, xen, or tcg can be available. By default, tcg is
used. If there is more than one accelerator specified, the next one
is used if the previous one fails to initialize.

kernel_irqchip=on|off

Enables in-kernel irqchip support for the chosen accelerator when
available.

vmport=on|off|auto

Enables emulation of VMWare IO port, for vmmouse etc. auto says
to select the value based on accel. For accel=xen the default is off
otherwise the default is on.

kvm_shadow_mem=size

Defines the size of the KVM shadow MMU.

dump-guest-core=on|off

Include guest memory in a core dump. The default is on.

mem-merge=on|off

Enables or disables memory merge support. This feature, when
supported by the host, de-duplicates identical memory pages among
VMs instances (enabled by default).

iommu=on|off

Enables or disables emulated Intel IOMMU (VT-d) support. The
default is off.

aes-key-wrap=on|off

Enables or disables AES key wrapping support on s390-ccw hosts.
This feature controls whether AES wrapping keys will be created
to allow execution of AES cryptographic functions. The default is
on.

dea-key-wrap=on|off

Enables or disables DEA key wrapping support on s390-ccw hosts.
This feature controls whether DEA wrapping keys will be created

Chapter 3: QEMU PC System emulator 6

to allow execution of DEA cryptographic functions. The default is
on.

-cpu model

Select CPU model (-cpu help for list and additional feature selection)

-smp

[cpus=]n[,cores=cores][,threads=threads][,sockets=sockets][,maxcpus=maxcpus]

Simulate an SMP system with n CPUs. On the PC target, up to 255 CPUs are
supported. On Sparc32 target, Linux limits the number of usable CPUs to 4.
For the PC target, the number of cores per socket, the number of threads per
cores and the total number of sockets can be specified. Missing values will be
computed. If any on the three values is given, the total number of CPUs n can
be omitted. maxcpus specifies the maximum number of hotpluggable CPUs.

-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]

-numa node[,memdev=id][,cpus=cpu[-cpu]][,nodeid=node]

Simulate a multi node NUMA system. If ‘mem’, ‘memdev’ and ‘cpus’ are omitted,
resources are split equally. Also, note that the -numa option doesn’t allocate any
of the specified resources. That is, it just assigns existing resources to NUMA
nodes. This means that one still has to use the -m, -smp options to allocate
RAM and VCPUs respectively, and possibly -object to specify the memory
backend for the ‘memdev’ suboption.

‘mem’ and ‘memdev’ are mutually exclusive. Furthermore, if one node uses
‘memdev’, all of them have to use it.

-add-fd fd=fd,set=set[,opaque=opaque]

Add a file descriptor to an fd set. Valid options are:

fd=fd This option defines the file descriptor of which a duplicate is added
to fd set. The file descriptor cannot be stdin, stdout, or stderr.

set=set This option defines the ID of the fd set to add the file descriptor
to.

opaque=opaque

This option defines a free-form string that can be used to describe
fd.

You can open an image using pre-opened file descriptors from an fd set:

qemu-system-i386

-add-fd fd=3,set=2,opaque="rdwr:/path/to/file"

-add-fd fd=4,set=2,opaque="rdonly:/path/to/file"

-drive file=/dev/fdset/2,index=0,media=disk

-set group.id.arg=value

Set parameter arg for item id of type group\n"

-global driver.prop=value

-global driver=driver,property=property,value=value

Set default value of driver’s property prop to value, e.g.:

Chapter 3: QEMU PC System emulator 7

qemu-system-i386 -global ide-drive.physical_block_size=4096 -drive file=file,if=ide,index=0,media=disk

In particular, you can use this to set driver properties for devices which are
created automatically by the machine model. To create a device which is not
created automatically and set properties on it, use -device.

-global driver.prop=value is shorthand for -global driver=driver,property=prop,value=value.
The longhand syntax works even when driver contains a dot.

-boot [order=drives][,once=drives][,menu=on|off][,splash=sp_

name][,splash-time=sp_time][,reboot-timeout=rb_timeout][,strict=on|off]

Specify boot order drives as a string of drive letters. Valid drive letters depend
on the target architecture. The x86 PC uses: a, b (floppy 1 and 2), c (first hard
disk), d (first CD-ROM), n-p (Etherboot from network adapter 1-4), hard disk
boot is the default. To apply a particular boot order only on the first startup,
specify it via once.

Interactive boot menus/prompts can be enabled via menu=on as far as
firmware/BIOS supports them. The default is non-interactive boot.

A splash picture could be passed to bios, enabling user to show it as logo,
when option splash=sp name is given and menu=on, If firmware/BIOS sup-
ports them. Currently Seabios for X86 system support it. limitation: The
splash file could be a jpeg file or a BMP file in 24 BPP format(true color).
The resolution should be supported by the SVGA mode, so the recommended
is 320x240, 640x480, 800x640.

A timeout could be passed to bios, guest will pause for rb timeout ms when
boot failed, then reboot. If rb timeout is ’-1’, guest will not reboot, qemu passes
’-1’ to bios by default. Currently Seabios for X86 system support it.

Do strict boot via strict=on as far as firmware/BIOS supports it. This only
effects when boot priority is changed by bootindex options. The default is
non-strict boot.

try to boot from network first, then from hard disk

qemu-system-i386 -boot order=nc

boot from CD-ROM first, switch back to default order after reboot

qemu-system-i386 -boot once=d

boot with a splash picture for 5 seconds.

qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000

Note: The legacy format ’-boot drives’ is still supported but its use is discour-
aged as it may be removed from future versions.

-m [size=]megs[,slots=n,maxmem=size]

Sets guest startup RAM size to megs megabytes. Default is 128 MiB. Op-
tionally, a suffix of “M” or “G” can be used to signify a value in megabytes
or gigabytes respectively. Optional pair slots, maxmem could be used to set
amount of hotpluggable memory slots and maximum amount of memory. Note
that maxmem must be aligned to the page size.

For example, the following command-line sets the guest startup RAM size to
1GB, creates 3 slots to hotplug additional memory and sets the maximum
memory the guest can reach to 4GB:

Chapter 3: QEMU PC System emulator 8

qemu-system-x86_64 -m 1G,slots=3,maxmem=4G

If slots and maxmem are not specified, memory hotplug won’t be enabled and
the guest startup RAM will never increase.

-mem-path path

Allocate guest RAM from a temporarily created file in path.

-mem-prealloc

Preallocate memory when using -mem-path.

-k language

Use keyboard layout language (for example fr for French). This option is only
needed where it is not easy to get raw PC keycodes (e.g. on Macs, with some
X11 servers or with a VNC display). You don’t normally need to use it on
PC/Linux or PC/Windows hosts.

The available layouts are:

ar de-ch es fo fr-ca hu ja mk no pt-br sv

da en-gb et fr fr-ch is lt nl pl ru th

de en-us fi fr-be hr it lv nl-be pt sl tr

The default is en-us.

-audio-help

Will show the audio subsystem help: list of drivers, tunable parameters.

-soundhw card1[,card2,...] or -soundhw all

Enable audio and selected sound hardware. Use ’help’ to print all available
sound hardware.

qemu-system-i386 -soundhw sb16,adlib disk.img

qemu-system-i386 -soundhw es1370 disk.img

qemu-system-i386 -soundhw ac97 disk.img

qemu-system-i386 -soundhw hda disk.img

qemu-system-i386 -soundhw all disk.img

qemu-system-i386 -soundhw help

Note that Linux’s i810 audio OSS kernel (for AC97) module might require
manually specifying clocking.

modprobe i810_audio clocking=48000

-balloon none

Disable balloon device.

-balloon virtio[,addr=addr]

Enable virtio balloon device (default), optionally with PCI address addr.

-device driver[,prop[=value][,...]]

Add device driver. prop=value sets driver properties. Valid properties depend
on the driver. To get help on possible drivers and properties, use -device help

and -device driver,help.

-name name

Sets the name of the guest. This name will be displayed in the SDL window
caption. The name will also be used for the VNC server. Also optionally set

Chapter 3: QEMU PC System emulator 9

the top visible process name in Linux. Naming of individual threads can also
be enabled on Linux to aid debugging.

-uuid uuid

Set system UUID.

Block device options:

-fda file

-fdb file Use file as floppy disk 0/1 image (see Section 3.6 [disk images], page 57).

-hda file

-hdb file

-hdc file

-hdd file Use file as hard disk 0, 1, 2 or 3 image (see Section 3.6 [disk images], page 57).

-cdrom file

Use file as CD-ROM image (you cannot use -hdc and -cdrom at the same
time). You can use the host CD-ROM by using /dev/cdrom as filename (see
Section 3.6.7 [host drives], page 69).

-drive option[,option[,option[,...]]]

Define a new drive. Valid options are:

file=file

This option defines which disk image (see Section 3.6 [disk images],
page 57) to use with this drive. If the filename contains comma, you
must double it (for instance, "file=my,,file" to use file "my,file").

Special files such as iSCSI devices can be specified using protocol
specific URLs. See the section for "Device URL Syntax" for more
information.

if=interface

This option defines on which type on interface the drive is con-
nected. Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.

bus=bus,unit=unit

These options define where is connected the drive by defining the
bus number and the unit id.

index=index

This option defines where is connected the drive by using an index
in the list of available connectors of a given interface type.

media=media

This option defines the type of the media: disk or cdrom.

cyls=c,heads=h,secs=s[,trans=t]

These options have the same definition as they have in -hdachs.

snapshot=snapshot

snapshot is "on" or "off" and controls snapshot mode for the given
drive (see -snapshot).

Chapter 3: QEMU PC System emulator 10

cache=cache

cache is "none", "writeback", "unsafe", "directsync" or
"writethrough" and controls how the host cache is used to access
block data.

aio=aio aio is "threads", or "native" and selects between pthread based
disk I/O and native Linux AIO.

discard=discard

discard is one of "ignore" (or "off") or "unmap" (or "on") and
controls whether discard (also known as trim or unmap) requests
are ignored or passed to the filesystem. Some machine types may
not support discard requests.

format=format

Specify which disk format will be used rather than detecting the
format. Can be used to specifiy format=raw to avoid interpreting
an untrusted format header.

serial=serial

This option specifies the serial number to assign to the device.

addr=addr

Specify the controller’s PCI address (if=virtio only).

werror=action,rerror=action

Specify which action to take on write and read errors. Valid actions
are: "ignore" (ignore the error and try to continue), "stop" (pause
QEMU), "report" (report the error to the guest), "enospc" (pause
QEMU only if the host disk is full; report the error to the guest oth-
erwise). The default setting is werror=enospc and rerror=report.

readonly Open drive file as read-only. Guest write attempts will fail.

copy-on-read=copy-on-read

copy-on-read is "on" or "off" and enables whether to copy read
backing file sectors into the image file.

detect-zeroes=detect-zeroes

detect-zeroes is "off", "on" or "unmap" and enables the automatic
conversion of plain zero writes by the OS to driver specific optimized
zero write commands. You may even choose "unmap" if discard is
set to "unmap" to allow a zero write to be converted to an UNMAP
operation.

By default, the cache=writeback mode is used. It will report data writes as
completed as soon as the data is present in the host page cache. This is safe as
long as your guest OS makes sure to correctly flush disk caches where needed.
If your guest OS does not handle volatile disk write caches correctly and your
host crashes or loses power, then the guest may experience data corruption.

For such guests, you should consider using cache=writethrough. This means
that the host page cache will be used to read and write data, but write notifi-

Chapter 3: QEMU PC System emulator 11

cation will be sent to the guest only after QEMU has made sure to flush each
write to the disk. Be aware that this has a major impact on performance.

The host page cache can be avoided entirely with cache=none. This will at-
tempt to do disk IO directly to the guest’s memory. QEMU may still perform
an internal copy of the data. Note that this is considered a writeback mode
and the guest OS must handle the disk write cache correctly in order to avoid
data corruption on host crashes.

The host page cache can be avoided while only sending write notifications to
the guest when the data has been flushed to the disk using cache=directsync.

In case you don’t care about data integrity over host failures, use cache=unsafe.
This option tells QEMU that it never needs to write any data to the disk but
can instead keep things in cache. If anything goes wrong, like your host losing
power, the disk storage getting disconnected accidentally, etc. your image will
most probably be rendered unusable. When using the -snapshot option, unsafe
caching is always used.

Copy-on-read avoids accessing the same backing file sectors repeatedly and is
useful when the backing file is over a slow network. By default copy-on-read is
off.

Instead of -cdrom you can use:

qemu-system-i386 -drive file=file,index=2,media=cdrom

Instead of -hda, -hdb, -hdc, -hdd, you can use:

qemu-system-i386 -drive file=file,index=0,media=disk

qemu-system-i386 -drive file=file,index=1,media=disk

qemu-system-i386 -drive file=file,index=2,media=disk

qemu-system-i386 -drive file=file,index=3,media=disk

You can open an image using pre-opened file descriptors from an fd set:

qemu-system-i386

-add-fd fd=3,set=2,opaque="rdwr:/path/to/file"

-add-fd fd=4,set=2,opaque="rdonly:/path/to/file"

-drive file=/dev/fdset/2,index=0,media=disk

You can connect a CDROM to the slave of ide0:

qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom

If you don’t specify the "file=" argument, you define an empty drive:

qemu-system-i386 -drive if=ide,index=1,media=cdrom

You can connect a SCSI disk with unit ID 6 on the bus #0:

qemu-system-i386 -drive file=file,if=scsi,bus=0,unit=6

Instead of -fda, -fdb, you can use:

qemu-system-i386 -drive file=file,index=0,if=floppy

qemu-system-i386 -drive file=file,index=1,if=floppy

By default, interface is "ide" and index is automatically incremented:

qemu-system-i386 -drive file=a -drive file=b"

is interpreted like:

Chapter 3: QEMU PC System emulator 12

qemu-system-i386 -hda a -hdb b

-mtdblock file

Use file as on-board Flash memory image.

-sd file Use file as SecureDigital card image.

-pflash file

Use file as a parallel flash image.

-snapshot

Write to temporary files instead of disk image files. In this case, the raw disk
image you use is not written back. You can however force the write back by
pressing C-a s (see Section 3.6 [disk images], page 57).

-hdachs c,h,s,[,t]

Force hard disk 0 physical geometry (1 <= c <= 16383, 1 <= h <= 16, 1 <= s
<= 63) and optionally force the BIOS translation mode (t=none, lba or auto).
Usually QEMU can guess all those parameters. This option is useful for old
MS-DOS disk images.

-fsdev fsdriver,id=id,path=path,[security_model=security_

model][,writeout=writeout][,readonly][,socket=socket|sock_fd=sock_fd]

Define a new file system device. Valid options are:

fsdriver This option specifies the fs driver backend to use. Currently "local",
"handle" and "proxy" file system drivers are supported.

id=id Specifies identifier for this device

path=path

Specifies the export path for the file system device. Files under this
path will be available to the 9p client on the guest.

security_model=security_model

Specifies the security model to be used for this export path.
Supported security models are "passthrough", "mapped-xattr",
"mapped-file" and "none". In "passthrough" security model, files
are stored using the same credentials as they are created on the
guest. This requires QEMU to run as root. In "mapped-xattr"
security model, some of the file attributes like uid, gid, mode bits
and link target are stored as file attributes. For "mapped-file"
these attributes are stored in the hidden .virtfs metadata
directory. Directories exported by this security model cannot
interact with other unix tools. "none" security model is same as
passthrough except the sever won’t report failures if it fails to set
file attributes like ownership. Security model is mandatory only
for local fsdriver. Other fsdrivers (like handle, proxy) don’t take
security model as a parameter.

writeout=writeout

This is an optional argument. The only supported value is "imme-
diate". This means that host page cache will be used to read and

Chapter 3: QEMU PC System emulator 13

write data but write notification will be sent to the guest only when
the data has been reported as written by the storage subsystem.

readonly Enables exporting 9p share as a readonly mount for guests. By
default read-write access is given.

socket=socket

Enables proxy filesystem driver to use passed socket file for com-
municating with virtfs-proxy-helper

sock_fd=sock_fd

Enables proxy filesystem driver to use passed socket descriptor for
communicating with virtfs-proxy-helper. Usually a helper like lib-
virt will create socketpair and pass one of the fds as sock fd

-fsdev option is used along with -device driver "virtio-9p-pci".

-device virtio-9p-pci,fsdev=id,mount_tag=mount_tag

Options for virtio-9p-pci driver are:

fsdev=id Specifies the id value specified along with -fsdev option

mount_tag=mount_tag

Specifies the tag name to be used by the guest to mount this export
point

-virtfs fsdriver[,path=path],mount_tag=mount_tag[,security_model=security_

model][,writeout=writeout][,readonly][,socket=socket|sock_fd=sock_fd]

The general form of a Virtual File system pass-through options are:

fsdriver This option specifies the fs driver backend to use. Currently "local",
"handle" and "proxy" file system drivers are supported.

id=id Specifies identifier for this device

path=path

Specifies the export path for the file system device. Files under this
path will be available to the 9p client on the guest.

security_model=security_model

Specifies the security model to be used for this export path.
Supported security models are "passthrough", "mapped-xattr",
"mapped-file" and "none". In "passthrough" security model, files
are stored using the same credentials as they are created on the
guest. This requires QEMU to run as root. In "mapped-xattr"
security model, some of the file attributes like uid, gid, mode bits
and link target are stored as file attributes. For "mapped-file"
these attributes are stored in the hidden .virtfs metadata
directory. Directories exported by this security model cannot
interact with other unix tools. "none" security model is same as
passthrough except the sever won’t report failures if it fails to set
file attributes like ownership. Security model is mandatory only
for local fsdriver. Other fsdrivers (like handle, proxy) don’t take
security model as a parameter.

Chapter 3: QEMU PC System emulator 14

writeout=writeout

This is an optional argument. The only supported value is "imme-
diate". This means that host page cache will be used to read and
write data but write notification will be sent to the guest only when
the data has been reported as written by the storage subsystem.

readonly Enables exporting 9p share as a readonly mount for guests. By
default read-write access is given.

socket=socket

Enables proxy filesystem driver to use passed socket file for com-
municating with virtfs-proxy-helper. Usually a helper like libvirt
will create socketpair and pass one of the fds as sock fd

sock_fd Enables proxy filesystem driver to use passed ’sock fd’ as the socket
descriptor for interfacing with virtfs-proxy-helper

-virtfs_synth

Create synthetic file system image

USB options:

-usb Enable the USB driver (will be the default soon)

-usbdevice devname

Add the USB device devname. See Section 3.10.1 [usb devices], page 77.

mouse Virtual Mouse. This will override the PS/2 mouse emulation when
activated.

tablet Pointer device that uses absolute coordinates (like a touchscreen).
This means QEMU is able to report the mouse position without
having to grab the mouse. Also overrides the PS/2 mouse emulation
when activated.

disk:[format=format]:file

Mass storage device based on file. The optional format argument
will be used rather than detecting the format. Can be used to speci-
fiy format=raw to avoid interpreting an untrusted format header.

host:bus.addr

Pass through the host device identified by bus.addr (Linux only).

host:vendor_id:product_id

Pass through the host device identified by vendor id:product id
(Linux only).

serial:[vendorid=vendor_id][,productid=product_id]:dev

Serial converter to host character device dev, see -serial for the
available devices.

braille Braille device. This will use BrlAPI to display the braille output
on a real or fake device.

Chapter 3: QEMU PC System emulator 15

net:options

Network adapter that supports CDC ethernet and RNDIS proto-
cols.

Display options:

-display type

Select type of display to use. This option is a replacement for the old style
-sdl/-curses/... options. Valid values for type are

sdl Display video output via SDL (usually in a separate graphics win-
dow; see the SDL documentation for other possibilities).

curses Display video output via curses. For graphics device models which
support a text mode, QEMU can display this output using a
curses/ncurses interface. Nothing is displayed when the graphics
device is in graphical mode or if the graphics device does not
support a text mode. Generally only the VGA device models
support text mode.

none Do not display video output. The guest will still see an emulated
graphics card, but its output will not be displayed to the QEMU
user. This option differs from the -nographic option in that it only
affects what is done with video output; -nographic also changes the
destination of the serial and parallel port data.

gtk Display video output in a GTK window. This interface provides
drop-down menus and other UI elements to configure and control
the VM during runtime.

vnc Start a VNC server on display <arg>

-nographic

Normally, QEMU uses SDL to display the VGA output. With this option, you
can totally disable graphical output so that QEMU is a simple command line
application. The emulated serial port is redirected on the console and muxed
with the monitor (unless redirected elsewhere explicitly). Therefore, you can
still use QEMU to debug a Linux kernel with a serial console. Use C-a h for
help on switching between the console and monitor.

-curses Normally, QEMU uses SDL to display the VGA output. With this option,
QEMU can display the VGA output when in text mode using a curses/ncurses
interface. Nothing is displayed in graphical mode.

-no-frame

Do not use decorations for SDL windows and start them using the whole
available screen space. This makes the using QEMU in a dedicated desktop
workspace more convenient.

-alt-grab

Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
affects the special keys (for fullscreen, monitor-mode switching, etc).

Chapter 3: QEMU PC System emulator 16

-ctrl-grab

Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also affects
the special keys (for fullscreen, monitor-mode switching, etc).

-no-quit Disable SDL window close capability.

-sdl Enable SDL.

-spice option[,option[,...]]

Enable the spice remote desktop protocol. Valid options are

port=<nr>

Set the TCP port spice is listening on for plaintext channels.

addr=<addr>

Set the IP address spice is listening on. Default is any address.

ipv4

ipv6

unix Force using the specified IP version.

password=<secret>

Set the password you need to authenticate.

sasl Require that the client use SASL to authenticate with the spice.
The exact choice of authentication method used is controlled
from the system / user’s SASL configuration file for the ’qemu’
service. This is typically found in /etc/sasl2/qemu.conf. If
running QEMU as an unprivileged user, an environment variable
SASL CONF PATH can be used to make it search alternate
locations for the service config. While some SASL auth methods
can also provide data encryption (eg GSSAPI), it is recommended
that SASL always be combined with the ’tls’ and ’x509’ settings
to enable use of SSL and server certificates. This ensures a data
encryption preventing compromise of authentication credentials.

disable-ticketing

Allow client connects without authentication.

disable-copy-paste

Disable copy paste between the client and the guest.

disable-agent-file-xfer

Disable spice-vdagent based file-xfer between the client and the
guest.

tls-port=<nr>

Set the TCP port spice is listening on for encrypted channels.

x509-dir=<dir>

Set the x509 file directory. Expects same filenames as -vnc $dis-
play,x509=$dir

Chapter 3: QEMU PC System emulator 17

x509-key-file=<file>

x509-key-password=<file>

x509-cert-file=<file>

x509-cacert-file=<file>

x509-dh-key-file=<file>

The x509 file names can also be configured individually.

tls-ciphers=<list>

Specify which ciphers to use.

tls-channel=[main|display|cursor|inputs|record|playback]

plaintext-channel=[main|display|cursor|inputs|record|playback]

Force specific channel to be used with or without TLS encryption.
The options can be specified multiple times to configure multiple
channels. The special name "default" can be used to set the default
mode. For channels which are not explicitly forced into one mode
the spice client is allowed to pick tls/plaintext as he pleases.

image-compression=[auto_glz|auto_lz|quic|glz|lz|off]

Configure image compression (lossless). Default is auto glz.

jpeg-wan-compression=[auto|never|always]

zlib-glz-wan-compression=[auto|never|always]

Configure wan image compression (lossy for slow links). Default is
auto.

streaming-video=[off|all|filter]

Configure video stream detection. Default is filter.

agent-mouse=[on|off]

Enable/disable passing mouse events via vdagent. Default is on.

playback-compression=[on|off]

Enable/disable audio stream compression (using celt 0.5.1). De-
fault is on.

seamless-migration=[on|off]

Enable/disable spice seamless migration. Default is off.

-portrait

Rotate graphical output 90 deg left (only PXA LCD).

-rotate deg

Rotate graphical output some deg left (only PXA LCD).

-vga type Select type of VGA card to emulate. Valid values for type are

cirrus Cirrus Logic GD5446 Video card. All Windows versions starting
from Windows 95 should recognize and use this graphic card. For
optimal performances, use 16 bit color depth in the guest and the
host OS. (This one is the default)

std Standard VGA card with Bochs VBE extensions. If your guest OS
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and

Chapter 3: QEMU PC System emulator 18

if you want to use high resolution modes (>= 1280x1024x16) then
you should use this option.

vmware VMWare SVGA-II compatible adapter. Use it if you have suffi-
ciently recent XFree86/XOrg server or Windows guest with a driver
for this card.

qxl QXL paravirtual graphic card. It is VGA compatible (including
VESA 2.0 VBE support). Works best with qxl guest drivers in-
stalled though. Recommended choice when using the spice proto-
col.

tcx (sun4m only) Sun TCX framebuffer. This is the default framebuffer
for sun4m machines and offers both 8-bit and 24-bit colour depths
at a fixed resolution of 1024x768.

cg3 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit frame-
buffer for sun4m machines available in both 1024x768 (OpenBIOS)
and 1152x900 (OBP) resolutions aimed at people wishing to run
older Solaris versions.

virtio Virtio VGA card.

none Disable VGA card.

-full-screen

Start in full screen.

-g widthxheight[xdepth]

Set the initial graphical resolution and depth (PPC, SPARC only).

-vnc display[,option[,option[,...]]]

Normally, QEMU uses SDL to display the VGA output. With this option, you
can have QEMU listen on VNC display display and redirect the VGA display
over the VNC session. It is very useful to enable the usb tablet device when
using this option (option -usbdevice tablet). When using the VNC display,
you must use the -k parameter to set the keyboard layout if you are not using
en-us. Valid syntax for the display is

host:d

TCP connections will only be allowed from host on display d. By
convention the TCP port is 5900+d. Optionally, host can be omit-
ted in which case the server will accept connections from any host.

unix:path

Connections will be allowed over UNIX domain sockets where path
is the location of a unix socket to listen for connections on.

none

VNC is initialized but not started. The monitor change command
can be used to later start the VNC server.

Following the display value there may be one or more option flags separated by
commas. Valid options are

Chapter 3: QEMU PC System emulator 19

reverse

Connect to a listening VNC client via a “reverse” connection. The
client is specified by the display. For reverse network connections
(host:d,reverse), the d argument is a TCP port number, not a
display number.

websocket

Opens an additional TCP listening port dedicated to VNC
Websocket connections. By definition the Websocket port is
5700+display. If host is specified connections will only be allowed
from this host. As an alternative the Websocket port could be
specified by using websocket=port. TLS encryption for the
Websocket connection is supported if the required certificates are
specified with the VNC option x509.

password

Require that password based authentication is used for client con-
nections.

The password must be set separately using the set_password com-
mand in the Section 3.5 [pcsys monitor], page 46. The syntax to
change your password is: set_password <protocol> <password>

where <protocol> could be either "vnc" or "spice".

If you would like to change <protocol> password expiration, you
should use expire_password <protocol> <expiration-time>

where expiration time could be one of the following options: now,
never, +seconds or UNIX time of expiration, e.g. +60 to make
password expire in 60 seconds, or 1335196800 to make password
expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
date and time).

You can also use keywords "now" or "never" for the expiration
time to allow <protocol> password to expire immediately or never
expire.

tls

Require that client use TLS when communicating with the VNC
server. This uses anonymous TLS credentials so is susceptible to a
man-in-the-middle attack. It is recommended that this option be
combined with either the x509 or x509verify options.

x509=/path/to/certificate/dir

Valid if tls is specified. Require that x509 credentials are used for
negotiating the TLS session. The server will send its x509 certificate
to the client. It is recommended that a password be set on the VNC
server to provide authentication of the client when this is used. The
path following this option specifies where the x509 certificates are
to be loaded from. See the Section 3.11 [vnc security], page 79
section for details on generating certificates.

Chapter 3: QEMU PC System emulator 20

x509verify=/path/to/certificate/dir

Valid if tls is specified. Require that x509 credentials are used for
negotiating the TLS session. The server will send its x509 certifi-
cate to the client, and request that the client send its own x509
certificate. The server will validate the client’s certificate against
the CA certificate, and reject clients when validation fails. If the
certificate authority is trusted, this is a sufficient authentication
mechanism. You may still wish to set a password on the VNC
server as a second authentication layer. The path following this
option specifies where the x509 certificates are to be loaded from.
See the Section 3.11 [vnc security], page 79 section for details on
generating certificates.

sasl

Require that the client use SASL to authenticate with the VNC
server. The exact choice of authentication method used is con-
trolled from the system / user’s SASL configuration file for the
’qemu’ service. This is typically found in /etc/sasl2/qemu.conf.
If running QEMU as an unprivileged user, an environment vari-
able SASL CONF PATH can be used to make it search alternate
locations for the service config. While some SASL auth methods
can also provide data encryption (eg GSSAPI), it is recommended
that SASL always be combined with the ’tls’ and ’x509’ settings to
enable use of SSL and server certificates. This ensures a data en-
cryption preventing compromise of authentication credentials. See
the Section 3.11 [vnc security], page 79 section for details on using
SASL authentication.

acl

Turn on access control lists for checking of the x509 client certificate
and SASL party. For x509 certs, the ACL check is made against the
certificate’s distinguished name. This is something that looks like
C=GB,O=ACME,L=Boston,CN=bob. For SASL party, the ACL check
is made against the username, which depending on the SASL plu-
gin, may include a realm component, eg bob or bob@EXAMPLE.COM.
When the acl flag is set, the initial access list will be empty, with
a deny policy. Thus no one will be allowed to use the VNC server
until the ACLs have been loaded. This can be achieved using the
acl monitor command.

lossy

Enable lossy compression methods (gradient, JPEG, ...). If this
option is set, VNC client may receive lossy framebuffer updates
depending on its encoding settings. Enabling this option can save
a lot of bandwidth at the expense of quality.

non-adaptive

Disable adaptive encodings. Adaptive encodings are enabled by
default. An adaptive encoding will try to detect frequently updated

Chapter 3: QEMU PC System emulator 21

screen regions, and send updates in these regions using a lossy
encoding (like JPEG). This can be really helpful to save bandwidth
when playing videos. Disabling adaptive encodings restores the
original static behavior of encodings like Tight.

share=[allow-exclusive|force-shared|ignore]

Set display sharing policy. ’allow-exclusive’ allows clients to ask for
exclusive access. As suggested by the rfb spec this is implemented
by dropping other connections. Connecting multiple clients in par-
allel requires all clients asking for a shared session (vncviewer: -
shared switch). This is the default. ’force-shared’ disables exclusive
client access. Useful for shared desktop sessions, where you don’t
want someone forgetting specify -shared disconnect everybody else.
’ignore’ completely ignores the shared flag and allows everybody
connect unconditionally. Doesn’t conform to the rfb spec but is
traditional QEMU behavior.

i386 target only:

-win2k-hack

Use it when installing Windows 2000 to avoid a disk full bug. After Windows
2000 is installed, you no longer need this option (this option slows down the
IDE transfers).

-no-fd-bootchk

Disable boot signature checking for floppy disks in BIOS. May be needed to
boot from old floppy disks.

-no-acpi Disable ACPI (Advanced Configuration and Power Interface) support. Use it
if your guest OS complains about ACPI problems (PC target machine only).

-no-hpet Disable HPET support.

-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n]

[,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]

Add ACPI table with specified header fields and context from specified files.
For file=, take whole ACPI table from the specified files, including all ACPI
headers (possible overridden by other options). For data=, only data portion
of the table is used, all header information is specified in the command line.

-smbios file=binary

Load SMBIOS entry from binary file.

-smbios

type=0[,vendor=str][,version=str][,date=str][,release=%d.%d][,uefi=on|off]

Specify SMBIOS type 0 fields

-smbios

type=1[,manufacturer=str][,product=str][,version=str][,serial=str][,uuid=uuid][,sku=str][,family=str]

Specify SMBIOS type 1 fields

-smbios

type=2[,manufacturer=str][,product=str][,version=str][,serial=str][,asset=str][,location=str][,family=str]

Specify SMBIOS type 2 fields

Chapter 3: QEMU PC System emulator 22

-smbios

type=3[,manufacturer=str][,version=str][,serial=str][,asset=str][,sku=str]

Specify SMBIOS type 3 fields

-smbios type=4[,sock_

pfx=str][,manufacturer=str][,version=str][,serial=str][,asset=str][,part=str]

Specify SMBIOS type 4 fields

-smbios type=17[,loc_

pfx=str][,bank=str][,manufacturer=str][,serial=str][,asset=str][,part=str][,speed=%d]

Specify SMBIOS type 17 fields

Network options:

-net nic[,vlan=n][,macaddr=mac][,model=type]

[,name=name][,addr=addr][,vectors=v]

Create a new Network Interface Card and connect it to VLAN n (n = 0 is the
default). The NIC is an e1000 by default on the PC target. Optionally, the
MAC address can be changed to mac, the device address set to addr (PCI cards
only), and a name can be assigned for use in monitor commands. Optionally,
for PCI cards, you can specify the number v of MSI-X vectors that the card
should have; this option currently only affects virtio cards; set v = 0 to disable
MSI-X. If no -net option is specified, a single NIC is created. QEMU can
emulate several different models of network card. Valid values for type are
virtio, i82551, i82557b, i82559er, ne2k_pci, ne2k_isa, pcnet, rtl8139,
e1000, smc91c111, lance and mcf_fec. Not all devices are supported on all
targets. Use -net nic,model=help for a list of available devices for your target.

-netdev user,id=id[,option][,option][,...]

-net user[,option][,option][,...]

Use the user mode network stack which requires no administrator privilege to
run. Valid options are:

vlan=n Connect user mode stack to VLAN n (n = 0 is the default).

id=id

name=name

Assign symbolic name for use in monitor commands.

net=addr[/mask]

Set IP network address the guest will see. Optionally specify the
netmask, either in the form a.b.c.d or as number of valid top-most
bits. Default is 10.0.2.0/24.

host=addr

Specify the guest-visible address of the host. Default is the 2nd IP
in the guest network, i.e. x.x.x.2.

restrict=on|off

If this option is enabled, the guest will be isolated, i.e. it will not be
able to contact the host and no guest IP packets will be routed over
the host to the outside. This option does not affect any explicitly
set forwarding rules.

Chapter 3: QEMU PC System emulator 23

hostname=name

Specifies the client hostname reported by the built-in DHCP server.

dhcpstart=addr

Specify the first of the 16 IPs the built-in DHCP server can assign.
Default is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to
x.x.x.31.

dns=addr Specify the guest-visible address of the virtual nameserver. The
address must be different from the host address. Default is the 3rd
IP in the guest network, i.e. x.x.x.3.

dnssearch=domain

Provides an entry for the domain-search list sent by the built-in
DHCP server. More than one domain suffix can be transmitted
by specifying this option multiple times. If supported, this will
cause the guest to automatically try to append the given domain
suffix(es) in case a domain name can not be resolved.

Example:

qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...]

tftp=dir When using the user mode network stack, activate a built-in TFTP
server. The files in dir will be exposed as the root of a TFTP server.
The TFTP client on the guest must be configured in binary mode
(use the command bin of the Unix TFTP client).

bootfile=file

When using the user mode network stack, broadcast file as the
BOOTP filename. In conjunction with tftp, this can be used to
network boot a guest from a local directory.

Example (using pxelinux):

qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0

smb=dir[,smbserver=addr]

When using the user mode network stack, activate a built-in SMB
server so that Windows OSes can access to the host files in dir

transparently. The IP address of the SMB server can be set to addr.
By default the 4th IP in the guest network is used, i.e. x.x.x.4.

In the guest Windows OS, the line:

10.0.2.4 smbserver

must be added in the file C:\WINDOWS\LMHOSTS (for windows
9x/Me) or C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS (Windows
NT/2000).

Then dir can be accessed in \\smbserver\qemu.

Note that a SAMBA server must be installed on the host OS.
QEMU was tested successfully with smbd versions from Red Hat
9, Fedora Core 3 and OpenSUSE 11.x.

Chapter 3: QEMU PC System emulator 24

hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport

Redirect incoming TCP or UDP connections to the host port host-
port to the guest IP address guestaddr on guest port guestport. If
guestaddr is not specified, its value is x.x.x.15 (default first address
given by the built-in DHCP server). By specifying hostaddr, the
rule can be bound to a specific host interface. If no connection type
is set, TCP is used. This option can be given multiple times.

For example, to redirect host X11 connection from screen 1 to guest
screen 0, use the following:

on the host

qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]

this host xterm should open in the guest X11 server

xterm -display :1

To redirect telnet connections from host port 5555 to telnet port
on the guest, use the following:

on the host

qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...]

telnet localhost 5555

Then when you use on the host telnet localhost 5555, you con-
nect to the guest telnet server.

guestfwd=[tcp]:server:port-dev

guestfwd=[tcp]:server:port-cmd:command

Forward guest TCP connections to the IP address server on port
port to the character device dev or to a program executed by
cmd:command which gets spawned for each connection. This op-
tion can be given multiple times.

You can either use a chardev directly and have that one used
throughout QEMU’s lifetime, like in the following example:

open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever

the guest accesses it

qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...]

Or you can execute a command on every TCP connection estab-
lished by the guest, so that QEMU behaves similar to an inetd
process for that virtual server:

call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234

and connect the TCP stream to its stdin/stdout

qemu -net ’user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321’

Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still pro-
cessed and applied to -net user. Mixing them with the new configuration syntax
gives undefined results. Their use for new applications is discouraged as they
will be removed from future versions.

Chapter 3: QEMU PC System emulator 25

-netdev

tap,id=id[,fd=h][,ifname=name][,script=file][,downscript=dfile][,helper=helper]

-net

tap[,vlan=n][,name=name][,fd=h][,ifname=name][,script=file][,downscript=dfile][,helper=helper]

Connect the host TAP network interface name to VLAN n.

Use the network script file to configure it and the network script dfile to de-
configure it. If name is not provided, the OS automatically provides one. The
default network configure script is /etc/qemu-ifup and the default network
deconfigure script is /etc/qemu-ifdown. Use script=no or downscript=no to
disable script execution.

If running QEMU as an unprivileged user, use the network helper helper
to configure the TAP interface. The default network helper executable is
/path/to/qemu-bridge-helper.

fd=h can be used to specify the handle of an already opened host TAP interface.

Examples:

#launch a QEMU instance with the default network script

qemu-system-i386 linux.img -net nic -net tap

#launch a QEMU instance with two NICs, each one connected

#to a TAP device

qemu-system-i386 linux.img \

-net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \

-net nic,vlan=1 -net tap,vlan=1,ifname=tap1

#launch a QEMU instance with the default network helper to

#connect a TAP device to bridge br0

qemu-system-i386 linux.img \

-net nic -net tap,"helper=/path/to/qemu-bridge-helper"

-netdev bridge,id=id[,br=bridge][,helper=helper]

-net bridge[,vlan=n][,name=name][,br=bridge][,helper=helper]

Connect a host TAP network interface to a host bridge device.

Use the network helper helper to configure the TAP interface and attach it to
the bridge. The default network helper executable is /path/to/qemu-bridge-
helper and the default bridge device is br0.

Examples:

#launch a QEMU instance with the default network helper to

#connect a TAP device to bridge br0

qemu-system-i386 linux.img -net bridge -net nic,model=virtio

#launch a QEMU instance with the default network helper to

#connect a TAP device to bridge qemubr0

qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio

-netdev socket,id=id[,fd=h][,listen=[host]:port][,connect=host:port]

-net socket[,vlan=n][,name=name][,fd=h]

[,listen=[host]:port][,connect=host:port]

Connect the VLAN n to a remote VLAN in another QEMU virtual machine us-
ing a TCP socket connection. If listen is specified, QEMU waits for incoming

Chapter 3: QEMU PC System emulator 26

connections on port (host is optional). connect is used to connect to another
QEMU instance using the listen option. fd=h specifies an already opened
TCP socket.

Example:

launch a first QEMU instance

qemu-system-i386 linux.img \

-net nic,macaddr=52:54:00:12:34:56 \

-net socket,listen=:1234

connect the VLAN 0 of this instance to the VLAN 0

of the first instance

qemu-system-i386 linux.img \

-net nic,macaddr=52:54:00:12:34:57 \

-net socket,connect=127.0.0.1:1234

-netdev socket,id=id[,fd=h][,mcast=maddr:port[,localaddr=addr]]

-net socket[,vlan=n][,name=name][,fd=h][,mcast=maddr:port[,localaddr=addr]]

Create a VLAN n shared with another QEMU virtual machines using a UDP
multicast socket, effectively making a bus for every QEMU with same multicast
address maddr and port. NOTES:

1. Several QEMU can be running on different hosts and share same bus (as-
suming correct multicast setup for these hosts).

2. mcast support is compatible with User Mode Linux (argument
ethN=mcast), see http://user-mode-linux.sf.net.

3. Use fd=h to specify an already opened UDP multicast socket.

Example:

launch one QEMU instance

qemu-system-i386 linux.img \

-net nic,macaddr=52:54:00:12:34:56 \

-net socket,mcast=230.0.0.1:1234

launch another QEMU instance on same "bus"

qemu-system-i386 linux.img \

-net nic,macaddr=52:54:00:12:34:57 \

-net socket,mcast=230.0.0.1:1234

launch yet another QEMU instance on same "bus"

qemu-system-i386 linux.img \

-net nic,macaddr=52:54:00:12:34:58 \

-net socket,mcast=230.0.0.1:1234

Example (User Mode Linux compat.):

launch QEMU instance (note mcast address selected

is UML’s default)

qemu-system-i386 linux.img \

-net nic,macaddr=52:54:00:12:34:56 \

-net socket,mcast=239.192.168.1:1102

launch UML

/path/to/linux ubd0=/path/to/root_fs eth0=mcast

Chapter 3: QEMU PC System emulator 27

Example (send packets from host’s 1.2.3.4):

qemu-system-i386 linux.img \

-net nic,macaddr=52:54:00:12:34:56 \

-net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4

-netdev

l2tpv3,id=id,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport],txsession=txsession[,rxsession=rxsession][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=txcookie][,rxcookie=rxcookie][,offset=offset]

-net

l2tpv3[,vlan=n][,name=name],src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport],txsession=txsession[,rxsession=rxsession][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=txcookie][,rxcookie=rxcookie][,offset=offset]

Connect VLAN n to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular
protocol to transport Ethernet (and other Layer 2) data frames between two
systems. It is present in routers, firewalls and the Linux kernel (from version
3.3 onwards).

This transport allows a VM to communicate to another VM, router or firewall
directly.

src=srcaddr

source address (mandatory)

dst=dstaddr

destination address (mandatory)

udp select udp encapsulation (default is ip).

srcport=srcport

source udp port.

dstport=dstport

destination udp port.

ipv6 force v6, otherwise defaults to v4.

rxcookie=rxcookie

txcookie=txcookie

Cookies are a weak form of security in the l2tpv3 specification. Their function
is mostly to prevent misconfiguration. By default they are 32 bit.

cookie64 Set cookie size to 64 bit instead of the default 32

counter=off

Force a ’cut-down’ L2TPv3 with no counter as in draft-mkonstan-l2tpext-keyed-
ipv6-tunnel-00

pincounter=on

Work around broken counter handling in peer. This may also help on networks
which have packet reorder.

offset=offset

Add an extra offset between header and data

For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge
br-lan on the remote Linux host 1.2.3.4:

Setup tunnel on linux host using raw ip as encapsulation

on 1.2.3.4

Chapter 3: QEMU PC System emulator 28

ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \

encap udp udp_sport 16384 udp_dport 16384

ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \

0xFFFFFFFF peer_session_id 0xFFFFFFFF

ifconfig vmtunnel0 mtu 1500

ifconfig vmtunnel0 up

brctl addif br-lan vmtunnel0

on 4.3.2.1

launch QEMU instance - if your network has reorder or is very lossy add ,pincounter

qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter

-netdev

vde,id=id[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]

-net vde[,vlan=n][,name=name][,sock=socketpath]

[,port=n][,group=groupname][,mode=octalmode]

Connect VLAN n to PORT n of a vde switch running on host and listening for
incoming connections on socketpath. Use GROUP groupname and MODE oc-
talmode to change default ownership and permissions for communication port.
This option is only available if QEMU has been compiled with vde support
enabled.

Example:

launch vde switch

vde_switch -F -sock /tmp/myswitch

launch QEMU instance

qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch

-netdev hubport,id=id,hubid=hubid

Create a hub port on QEMU "vlan" hubid.

The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a
single netdev. -net and -device with parameter vlan create the required hub
automatically.

-netdev vhost-user,chardev=id[,vhostforce=on|off]

Establish a vhost-user netdev, backed by a chardev id. The chardev should be
a unix domain socket backed one. The vhost-user uses a specifically defined
protocol to pass vhost ioctl replacement messages to an application on the
other end of the socket. On non-MSIX guests, the feature can be forced with
vhostforce.

Example:

qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \

-numa node,memdev=mem \

-chardev socket,path=/path/to/socket \

-netdev type=vhost-user,id=net0,chardev=chr0 \

Chapter 3: QEMU PC System emulator 29

-device virtio-net-pci,netdev=net0

-net dump[,vlan=n][,file=file][,len=len]

Dump network traffic on VLAN n to file file (qemu-vlan0.pcap by default).
At most len bytes (64k by default) per packet are stored. The file format is
libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.

-net none Indicate that no network devices should be configured. It is used to override
the default configuration (-net nic -net user) which is activated if no -net

options are provided.

Character device options:

The general form of a character device option is:

-chardev backend ,id=id [,mux=on|off] [,options]

Backend is one of: null, socket, udp, msmouse, vc, ringbuf, file, pipe,
console, serial, pty, stdio, braille, tty, parallel, parport, spicevmc.
spiceport. The specific backend will determine the applicable options.

All devices must have an id, which can be any string up to 127 characters long.
It is used to uniquely identify this device in other command line directives.

A character device may be used in multiplexing mode by multiple front-ends.
The key sequence of Control-a and c will rotate the input focus between
attached front-ends. Specify mux=on to enable this mode.

Options to each backend are described below.

-chardev null ,id=id

A void device. This device will not emit any data, and will drop any data it
receives. The null backend does not take any options.

-chardev socket ,id=id [TCP options or unix options] [,server] [,nowait]

[,telnet] [,reconnect=seconds]

Create a two-way stream socket, which can be either a TCP or a unix socket. A
unix socket will be created if path is specified. Behaviour is undefined if TCP
options are specified for a unix socket.

server specifies that the socket shall be a listening socket.

nowait specifies that QEMU should not block waiting for a client to connect
to a listening socket.

telnet specifies that traffic on the socket should interpret telnet escape se-
quences.

reconnect sets the timeout for reconnecting on non-server sockets when the
remote end goes away. qemu will delay this many seconds and then attempt to
reconnect. Zero disables reconnecting, and is the default.

TCP and unix socket options are given below:

TCP options: port=port [,host=host] [,to=to] [,ipv4] [,ipv6]

[,nodelay]

host for a listening socket specifies the local address to be bound.
For a connecting socket species the remote host to connect to.

Chapter 3: QEMU PC System emulator 30

host is optional for listening sockets. If not specified it defaults
to 0.0.0.0.

port for a listening socket specifies the local port to be bound. For
a connecting socket specifies the port on the remote host to connect
to. port can be given as either a port number or a service name.
port is required.

to is only relevant to listening sockets. If it is specified, and port

cannot be bound, QEMU will attempt to bind to subsequent ports
up to and including to until it succeeds. to must be specified as a
port number.

ipv4 and ipv6 specify that either IPv4 or IPv6 must be used. If
neither is specified the socket may use either protocol.

nodelay disables the Nagle algorithm.

unix options: path=path

path specifies the local path of the unix socket. path is required.

-chardev udp ,id=id [,host=host] ,port=port [,localaddr=localaddr]

[,localport=localport] [,ipv4] [,ipv6]

Sends all traffic from the guest to a remote host over UDP.

host specifies the remote host to connect to. If not specified it defaults to
localhost.

port specifies the port on the remote host to connect to. port is required.

localaddr specifies the local address to bind to. If not specified it defaults to
0.0.0.0.

localport specifies the local port to bind to. If not specified any available local
port will be used.

ipv4 and ipv6 specify that either IPv4 or IPv6 must be used. If neither is
specified the device may use either protocol.

-chardev msmouse ,id=id

Forward QEMU’s emulated msmouse events to the guest. msmouse does not
take any options.

-chardev vc ,id=id [[,width=width] [,height=height]] [[,cols=cols]

[,rows=rows]]

Connect to a QEMU text console. vc may optionally be given a specific size.

width and height specify the width and height respectively of the console, in
pixels.

cols and rows specify that the console be sized to fit a text console with the
given dimensions.

-chardev ringbuf ,id=id [,size=size]

Create a ring buffer with fixed size size. size must be a power of two, and
defaults to 64K).

-chardev file ,id=id ,path=path

Log all traffic received from the guest to a file.

Chapter 3: QEMU PC System emulator 31

path specifies the path of the file to be opened. This file will be created if it
does not already exist, and overwritten if it does. path is required.

-chardev pipe ,id=id ,path=path

Create a two-way connection to the guest. The behaviour differs slightly be-
tween Windows hosts and other hosts:

On Windows, a single duplex pipe will be created at \\.pipe\path.

On other hosts, 2 pipes will be created called path.in and path.out. Data
written to path.in will be received by the guest. Data written by the guest
can be read from path.out. QEMU will not create these fifos, and requires
them to be present.

path forms part of the pipe path as described above. path is required.

-chardev console ,id=id

Send traffic from the guest to QEMU’s standard output. console does not take
any options.

console is only available on Windows hosts.

-chardev serial ,id=id ,path=path

Send traffic from the guest to a serial device on the host.

On Unix hosts serial will actually accept any tty device, not only serial lines.

path specifies the name of the serial device to open.

-chardev pty ,id=id

Create a new pseudo-terminal on the host and connect to it. pty does not take
any options.

pty is not available on Windows hosts.

-chardev stdio ,id=id [,signal=on|off]

Connect to standard input and standard output of the QEMU process.

signal controls if signals are enabled on the terminal, that includes exiting
QEMU with the key sequence Control-c. This option is enabled by default,
use signal=off to disable it.

stdio is not available on Windows hosts.

-chardev braille ,id=id

Connect to a local BrlAPI server. braille does not take any options.

-chardev tty ,id=id ,path=path

tty is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and Drag-
onFlyBSD hosts. It is an alias for serial.

path specifies the path to the tty. path is required.

-chardev parallel ,id=id ,path=path

-chardev parport ,id=id ,path=path

parallel is only available on Linux, FreeBSD and DragonFlyBSD hosts.

Connect to a local parallel port.

path specifies the path to the parallel port device. path is required.

Chapter 3: QEMU PC System emulator 32

-chardev spicevmc ,id=id ,debug=debug, name=name

spicevmc is only available when spice support is built in.

debug debug level for spicevmc

name name of spice channel to connect to

Connect to a spice virtual machine channel, such as vdiport.

-chardev spiceport ,id=id ,debug=debug, name=name

spiceport is only available when spice support is built in.

debug debug level for spicevmc

name name of spice port to connect to

Connect to a spice port, allowing a Spice client to handle the traffic identified
by a name (preferably a fqdn).

Device URL Syntax:

In addition to using normal file images for the emulated storage devices, QEMU can also
use networked resources such as iSCSI devices. These are specified using a special URL
syntax.

iSCSI iSCSI support allows QEMU to access iSCSI resources directly and use as im-
ages for the guest storage. Both disk and cdrom images are supported.

Syntax for specifying iSCSI LUNs is “iscsi://<target-ip>[:<port>]/<target-
iqn>/<lun>”

By default qemu will use the iSCSI initiator-name ’iqn.2008-11.org.linux-
kvm[:<name>]’ but this can also be set from the command line or a
configuration file.

Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to
detect stalled requests and force a reestablishment of the session. The timeout
is specified in seconds. The default is 0 which means no timeout. Libiscsi 1.15.0
or greater is required for this feature.

Example (without authentication):

qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \

-cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \

-drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1

Example (CHAP username/password via URL):

qemu-system-i386 -drive file=iscsi://user%password@192.0.2.1/iqn.2001-04.com.example/1

Example (CHAP username/password via environment variables):

LIBISCSI_CHAP_USERNAME="user" \

LIBISCSI_CHAP_PASSWORD="password" \

qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1

iSCSI support is an optional feature of QEMU and only available when compiled
and linked against libiscsi.

iSCSI parameters such as username and password can also be specified via a
configuration file. See qemu-doc for more information and examples.

Chapter 3: QEMU PC System emulator 33

NBD QEMU supports NBD (Network Block Devices) both using TCP protocol as
well as Unix Domain Sockets.

Syntax for specifying a NBD device using TCP “nbd:<server-
ip>:<port>[:exportname=<export>]”

Syntax for specifying a NBD device using Unix Domain Sockets
“nbd:unix:<domain-socket>[:exportname=<export>]”

Example for TCP

qemu-system-i386 --drive file=nbd:192.0.2.1:30000

Example for Unix Domain Sockets

qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket

SSH QEMU supports SSH (Secure Shell) access to remote disks.

Examples:

qemu-system-i386 -drive file=ssh://user@host/path/to/disk.img

qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img

Currently authentication must be done using ssh-agent. Other authentication
methods may be supported in future.

Sheepdog Sheepdog is a distributed storage system for QEMU. QEMU supports using
either local sheepdog devices or remote networked devices.

Syntax for specifying a sheepdog device

sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]

Example

qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine

See also http://http://www.osrg.net/sheepdog/.

GlusterFS

GlusterFS is an user space distributed file system. QEMU supports the use
of GlusterFS volumes for hosting VM disk images using TCP, Unix Domain
Sockets and RDMA transport protocols.

Syntax for specifying a VM disk image on GlusterFS volume is

gluster[+transport]://[server[:port]]/volname/image[?socket=...]

Example

qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img

See also http://www.gluster.org.

HTTP/HTTPS/FTP/FTPS/TFTP

QEMU supports read-only access to files accessed over http(s), ftp(s) and tftp.

Syntax using a single filename:

<protocol>://[<username>[:<password>]@]<host>/<path>

where:

protocol ’http’, ’https’, ’ftp’, ’ftps’, or ’tftp’.

username Optional username for authentication to the remote server.

Chapter 3: QEMU PC System emulator 34

password Optional password for authentication to the remote server.

host Address of the remote server.

path Path on the remote server, including any query string.

The following options are also supported:

url The full URL when passing options to the driver explicitly.

readahead

The amount of data to read ahead with each range request to the
remote server. This value may optionally have the suffix ’T’, ’G’,
’M’, ’K’, ’k’ or ’b’. If it does not have a suffix, it will be assumed to
be in bytes. The value must be a multiple of 512 bytes. It defaults
to 256k.

sslverify

Whether to verify the remote server’s certificate when connecting
over SSL. It can have the value ’on’ or ’off’. It defaults to ’on’.

cookie Send this cookie (it can also be a list of cookies separated by ’;’)
with each outgoing request. Only supported when using protocols
such as HTTP which support cookies, otherwise ignored.

timeout Set the timeout in seconds of the CURL connection. This timeout
is the time that CURL waits for a response from the remote server
to get the size of the image to be downloaded. If not set, the default
timeout of 5 seconds is used.

Note that when passing options to qemu explicitly, driver is the value of <pro-
tocol>.

Example: boot from a remote Fedora 20 live ISO image

qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly

qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly

Example: boot from a remote Fedora 20 cloud image using a local overlay for
writes, copy-on-read, and a readahead of 64k

qemu-img create -f qcow2 -o backing_file=’json:{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"}’ /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2

qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on

Example: boot from an image stored on a VMware vSphere server with a self-
signed certificate using a local overlay for writes, a readahead of 64k and a
timeout of 10 seconds.

qemu-img create -f qcow2 -o backing_file=’json:{"file.driver":"https",, "file.url":"https://user:password@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10}’ /tmp/test.qcow2

qemu-system-x86_64 -drive file=/tmp/test.qcow2

Bluetooth(R) options:

-bt hci[...]

Defines the function of the corresponding Bluetooth HCI. -bt options are
matched with the HCIs present in the chosen machine type. For example

Chapter 3: QEMU PC System emulator 35

when emulating a machine with only one HCI built into it, only the first -bt
hci[...] option is valid and defines the HCI’s logic. The Transport Layer is
decided by the machine type. Currently the machines n800 and n810 have one
HCI and all other machines have none.

The following three types are recognized:

-bt hci,null

(default) The corresponding Bluetooth HCI assumes no internal
logic and will not respond to any HCI commands or emit events.

-bt hci,host[:id]

(bluez only) The corresponding HCI passes commands / events to
/ from the physical HCI identified by the name id (default: hci0)
on the computer running QEMU. Only available on bluez capable
systems like Linux.

-bt hci[,vlan=n]

Add a virtual, standard HCI that will participate in the Bluetooth
scatternet n (default 0). Similarly to -net VLANs, devices inside
a bluetooth network n can only communicate with other devices in
the same network (scatternet).

-bt vhci[,vlan=n]

(Linux-host only) Create a HCI in scatternet n (default 0) attached to the
host bluetooth stack instead of to the emulated target. This allows the host
and target machines to participate in a common scatternet and communicate.
Requires the Linux vhci driver installed. Can be used as following:

qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5

-bt device:dev[,vlan=n]

Emulate a bluetooth device dev and place it in network n (default 0). QEMU
can only emulate one type of bluetooth devices currently:

keyboard Virtual wireless keyboard implementing the HIDP bluetooth pro-
file.

TPM device options:

The general form of a TPM device option is:

-tpmdev backend ,id=id [,options]

Backend type must be: passthrough.

The specific backend type will determine the applicable options. The -tpmdev

option creates the TPM backend and requires a -device option that specifies
the TPM frontend interface model.

Options to each backend are described below.

Use ’help’ to print all available TPM backend types.

qemu -tpmdev help

-tpmdev passthrough, id=id, path=path, cancel-path=cancel-path

(Linux-host only) Enable access to the host’s TPM using the passthrough driver.

Chapter 3: QEMU PC System emulator 36

path specifies the path to the host’s TPM device, i.e., on a Linux host this
would be /dev/tpm0. path is optional and by default /dev/tpm0 is used.

cancel-path specifies the path to the host TPM device’s sysfs entry allowing
for cancellation of an ongoing TPM command. cancel-path is optional and
by default QEMU will search for the sysfs entry to use.

Some notes about using the host’s TPM with the passthrough driver:

The TPM device accessed by the passthrough driver must not be used by any
other application on the host.

Since the host’s firmware (BIOS/UEFI) has already initialized the TPM, the
VM’s firmware (BIOS/UEFI) will not be able to initialize the TPM again
and may therefore not show a TPM-specific menu that would otherwise allow
the user to configure the TPM, e.g., allow the user to enable/disable or acti-
vate/deactivate the TPM. Further, if TPM ownership is released from within
a VM then the host’s TPM will get disabled and deactivated. To enable and
activate the TPM again afterwards, the host has to be rebooted and the user is
required to enter the firmware’s menu to enable and activate the TPM. If the
TPM is left disabled and/or deactivated most TPM commands will fail.

To create a passthrough TPM use the following two options:

-tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0

Note that the -tpmdev id is tpm0 and is referenced by tpmdev=tpm0 in the
device option.

Linux/Multiboot boot specific:

When using these options, you can use a given Linux or Multiboot kernel without installing
it in the disk image. It can be useful for easier testing of various kernels.

-kernel bzImage

Use bzImage as kernel image. The kernel can be either a Linux kernel or in
multiboot format.

-append cmdline

Use cmdline as kernel command line

-initrd file

Use file as initial ram disk.

-initrd "file1 arg=foo,file2"

This syntax is only available with multiboot.

Use file1 and file2 as modules and pass arg=foo as parameter to the first module.

-dtb file Use file as a device tree binary (dtb) image and pass it to the kernel on boot.

Debug/Expert options:

-fw_cfg [name=]name,file=file

Add named fw cfg entry from file. name determines the name of the entry in
the fw cfg file directory exposed to the guest.

-serial dev

Redirect the virtual serial port to host character device dev. The default device
is vc in graphical mode and stdio in non graphical mode.

Chapter 3: QEMU PC System emulator 37

This option can be used several times to simulate up to 4 serial ports.

Use -serial none to disable all serial ports.

Available character devices are:

vc[:WxH] Virtual console. Optionally, a width and height can be given in
pixel with

vc:800x600

It is also possible to specify width or height in characters:

vc:80Cx24C

pty [Linux only] Pseudo TTY (a new PTY is automatically allocated)

none No device is allocated.

null void device

chardev:id

Use a named character device defined with the -chardev option.

/dev/XXX [Linux only] Use host tty, e.g. /dev/ttyS0. The host serial port
parameters are set according to the emulated ones.

/dev/parportN

[Linux only, parallel port only] Use host parallel port N. Currently
SPP and EPP parallel port features can be used.

file:filename

Write output to filename. No character can be read.

stdio [Unix only] standard input/output

pipe:filename

name pipe filename

COMn [Windows only] Use host serial port n

udp:[remote_host]:remote_port[@[src_ip]:src_port]

This implements UDP Net Console. When remote host or src ip
are not specified they default to 0.0.0.0. When not using a spec-
ified src port a random port is automatically chosen.

If you just want a simple readonly console you can use netcat or
nc, by starting QEMU with: -serial udp::4555 and nc as: nc -u

-l -p 4555. Any time QEMU writes something to that port it will
appear in the netconsole session.

If you plan to send characters back via netconsole or you want to
stop and start QEMU a lot of times, you should have QEMU use
the same source port each time by using something like -serial

udp::4555@:4556 to QEMU. Another approach is to use a patched
version of netcat which can listen to a TCP port and send and
receive characters via udp. If you have a patched version of netcat
which activates telnet remote echo and single char transfer, then
you can use the following options to step up a netcat redirector to
allow telnet on port 5555 to access the QEMU port.

Chapter 3: QEMU PC System emulator 38

QEMU Options:

-serial udp::4555@:4556

netcat options:

-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T

telnet options:

localhost 5555

tcp:[host]:port[,server][,nowait][,nodelay][,reconnect=seconds]

The TCP Net Console has two modes of operation. It can send the
serial I/O to a location or wait for a connection from a location. By
default the TCP Net Console is sent to host at the port. If you use
the server option QEMU will wait for a client socket application
to connect to the port before continuing, unless the nowait option
was specified. The nodelay option disables the Nagle buffering
algorithm. The reconnect option only applies if noserver is set, if
the connection goes down it will attempt to reconnect at the given
interval. If host is omitted, 0.0.0.0 is assumed. Only one TCP
connection at a time is accepted. You can use telnet to connect
to the corresponding character device.

Example to send tcp console to 192.168.0.2 port 4444

-serial tcp:192.168.0.2:4444

Example to listen and wait on port 4444 for connection

-serial tcp::4444,server

Example to not wait and listen on ip 192.168.0.100 port

4444

-serial tcp:192.168.0.100:4444,server,nowait

telnet:host:port[,server][,nowait][,nodelay]

The telnet protocol is used instead of raw tcp sockets. The options
work the same as if you had specified -serial tcp. The difference
is that the port acts like a telnet server or client using telnet option
negotiation. This will also allow you to send the MAGIC SYSRQ
sequence if you use a telnet that supports sending the break se-
quence. Typically in unix telnet you do it with Control-] and then
type "send break" followed by pressing the enter key.

unix:path[,server][,nowait][,reconnect=seconds]

A unix domain socket is used instead of a tcp socket. The option
works the same as if you had specified -serial tcp except the unix
domain socket path is used for connections.

mon:dev_string

This is a special option to allow the monitor to be multiplexed onto
another serial port. The monitor is accessed with key sequence of
Control-a and then pressing c. dev string should be any one of
the serial devices specified above. An example to multiplex the
monitor onto a telnet server listening on port 4444 would be:

Chapter 3: QEMU PC System emulator 39

-serial mon:telnet::4444,server,nowait

When the monitor is multiplexed to stdio in this way, Ctrl+C will
not terminate QEMU any more but will be passed to the guest
instead.

braille Braille device. This will use BrlAPI to display the braille output
on a real or fake device.

msmouse Three button serial mouse. Configure the guest to use Microsoft
protocol.

-parallel dev

Redirect the virtual parallel port to host device dev (same devices as the serial
port). On Linux hosts, /dev/parportN can be used to use hardware devices
connected on the corresponding host parallel port.

This option can be used several times to simulate up to 3 parallel ports.

Use -parallel none to disable all parallel ports.

-monitor dev

Redirect the monitor to host device dev (same devices as the serial port). The
default device is vc in graphical mode and stdio in non graphical mode. Use
-monitor none to disable the default monitor.

-qmp dev Like -monitor but opens in ’control’ mode.

-qmp-pretty dev

Like -qmp but uses pretty JSON formatting.

-mon [chardev=]name[,mode=readline|control][,default]

Setup monitor on chardev name.

-debugcon dev

Redirect the debug console to host device dev (same devices as the serial port).
The debug console is an I/O port which is typically port 0xe9; writing to that
I/O port sends output to this device. The default device is vc in graphical
mode and stdio in non graphical mode.

-pidfile file

Store the QEMU process PID in file. It is useful if you launch QEMU from a
script.

-singlestep

Run the emulation in single step mode.

-S Do not start CPU at startup (you must type ’c’ in the monitor).

-realtime mlock=on|off

Run qemu with realtime features. mlocking qemu and guest memory can be
enabled via mlock=on (enabled by default).

-gdb dev Wait for gdb connection on device dev (see Section 3.12 [gdb usage], page 83).
Typical connections will likely be TCP-based, but also UDP, pseudo TTY, or
even stdio are reasonable use case. The latter is allowing to start QEMU from
within gdb and establish the connection via a pipe:

Chapter 3: QEMU PC System emulator 40

(gdb) target remote | exec qemu-system-i386 -gdb stdio ...

-s Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234 (see
Section 3.12 [gdb usage], page 83).

-d item1[,...]

Enable logging of specified items. Use ’-d help’ for a list of log items.

-D logfile

Output log in logfile instead of to stderr

-L path Set the directory for the BIOS, VGA BIOS and keymaps.

-bios file

Set the filename for the BIOS.

-enable-kvm

Enable KVM full virtualization support. This option is only available if KVM
support is enabled when compiling.

-xen-domid id

Specify xen guest domain id (XEN only).

-xen-create

Create domain using xen hypercalls, bypassing xend. Warning: should not be
used when xend is in use (XEN only).

-xen-attach

Attach to existing xen domain. xend will use this when starting QEMU (XEN
only).

-no-reboot

Exit instead of rebooting.

-no-shutdown

Don’t exit QEMU on guest shutdown, but instead only stop the emulation.
This allows for instance switching to monitor to commit changes to the disk
image.

-loadvm file

Start right away with a saved state (loadvm in monitor)

-daemonize

Daemonize the QEMU process after initialization. QEMU will not detach from
standard IO until it is ready to receive connections on any of its devices. This
option is a useful way for external programs to launch QEMU without having
to cope with initialization race conditions.

-option-rom file

Load the contents of file as an option ROM. This option is useful to load things
like EtherBoot.

-rtc [base=utc|localtime|date][,clock=host|vm][,driftfix=none|slew]

Specify base as utc or localtime to let the RTC start at the current UTC
or local time, respectively. localtime is required for correct date in MS-DOS

Chapter 3: QEMU PC System emulator 41

or Windows. To start at a specific point in time, provide date in the format
2006-06-17T16:01:21 or 2006-06-17. The default base is UTC.

By default the RTC is driven by the host system time. This allows using of the
RTC as accurate reference clock inside the guest, specifically if the host time is
smoothly following an accurate external reference clock, e.g. via NTP. If you
want to isolate the guest time from the host, you can set clock to rt instead.
To even prevent it from progressing during suspension, you can set it to vm.

Enable driftfix (i386 targets only) if you experience time drift problems,
specifically with Windows’ ACPI HAL. This option will try to figure out how
many timer interrupts were not processed by the Windows guest and will re-
inject them.

-icount [shift=N|auto]

Enable virtual instruction counter. The virtual cpu will execute one instruction
every 2^N ns of virtual time. If auto is specified then the virtual cpu speed
will be automatically adjusted to keep virtual time within a few seconds of real
time.

When the virtual cpu is sleeping, the virtual time will advance at default speed
unless sleep=no is specified. With sleep=no, the virtual time will jump to
the next timer deadline instantly whenever the virtual cpu goes to sleep mode
and will not advance if no timer is enabled. This behavior give deterministic
execution times from the guest point of view.

Note that while this option can give deterministic behavior, it does not provide
cycle accurate emulation. Modern CPUs contain superscalar out of order cores
with complex cache hierarchies. The number of instructions executed often has
little or no correlation with actual performance.

align=on will activate the delay algorithm which will try to to synchronise the
host clock and the virtual clock. The goal is to have a guest running at the
real frequency imposed by the shift option. Whenever the guest clock is behind
the host clock and if align=on is specified then we print a message to the user
to inform about the delay. Currently this option does not work when shift is
auto. Note: The sync algorithm will work for those shift values for which the
guest clock runs ahead of the host clock. Typically this happens when the shift
value is high (how high depends on the host machine).

-watchdog model

Create a virtual hardware watchdog device. Once enabled (by a guest action),
the watchdog must be periodically polled by an agent inside the guest or else
the guest will be restarted. Choose a model for which your guest has drivers.

The model is the model of hardware watchdog to emulate. Use -watchdog

help to list available hardware models. Only one watchdog can be enabled for
a guest.

The following models may be available:

ib700 iBASE 700 is a very simple ISA watchdog with a single timer.

i6300esb Intel 6300ESB I/O controller hub is a much more featureful PCI-
based dual-timer watchdog.

Chapter 3: QEMU PC System emulator 42

diag288 A virtual watchdog for s390x backed by the diagnose 288 hypercall
(currently KVM only).

-watchdog-action action

The action controls what QEMU will do when the watchdog timer expires.
The default is reset (forcefully reset the guest). Other possible actions are:
shutdown (attempt to gracefully shutdown the guest), poweroff (forcefully
poweroff the guest), pause (pause the guest), debug (print a debug message
and continue), or none (do nothing).

Note that the shutdown action requires that the guest responds to ACPI sig-
nals, which it may not be able to do in the sort of situations where the watch-
dog would have expired, and thus -watchdog-action shutdown is not recom-
mended for production use.

Examples:

-watchdog i6300esb -watchdog-action pause

-watchdog ib700

-echr numeric_ascii_value

Change the escape character used for switching to the monitor when using mon-
itor and serial sharing. The default is 0x01 when using the -nographic option.
0x01 is equal to pressing Control-a. You can select a different character from
the ascii control keys where 1 through 26 map to Control-a through Control-
z. For instance you could use the either of the following to change the escape
character to Control-t.

-echr 0x14

-echr 20

-virtioconsole c

Set virtio console.

This option is maintained for backward compatibility.

Please use -device virtconsole for the new way of invocation.

-show-cursor

Show cursor.

-tb-size n

Set TB size.

-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]

-incoming rdma:host:port[,ipv4][,ipv6]

Prepare for incoming migration, listen on a given tcp port.

-incoming unix:socketpath

Prepare for incoming migration, listen on a given unix socket.

-incoming fd:fd

Accept incoming migration from a given filedescriptor.

-incoming exec:cmdline

Accept incoming migration as an output from specified external command.

Chapter 3: QEMU PC System emulator 43

-incoming defer

Wait for the URI to be specified via migrate incoming. The monitor can be
used to change settings (such as migration parameters) prior to issuing the
migrate incoming to allow the migration to begin.

-nodefaults

Don’t create default devices. Normally, QEMU sets the default devices like
serial port, parallel port, virtual console, monitor device, VGA adapter, floppy
and CD-ROM drive and others. The -nodefaults option will disable all those
default devices.

-chroot dir

Immediately before starting guest execution, chroot to the specified directory.
Especially useful in combination with -runas.

-runas user

Immediately before starting guest execution, drop root privileges, switching to
the specified user.

-prom-env variable=value

Set OpenBIOS nvram variable to given value (PPC, SPARC only).

-semihosting

Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).

-semihosting-config

[enable=on|off][,target=native|gdb|auto][,arg=str[,...]]

Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).

target=native|gdb|auto

Defines where the semihosting calls will be addressed, to QEMU
(native) or to GDB (gdb). The default is auto, which means gdb
during debug sessions and native otherwise.

arg=str1,arg=str2,...

Allows the user to pass input arguments, and can be used mul-
tiple times to build up a list. The old-style -kernel/-append
method of passing a command line is still supported for back-
ward compatibility. If both the --semihosting-config arg and
the -kernel/-append are specified, the former is passed to semi-
hosting as it always takes precedence.

-old-param

Old param mode (ARM only).

-sandbox arg

Enable Seccomp mode 2 system call filter. ’on’ will enable syscall filtering and
’off’ will disable it. The default is ’off’.

-readconfig file

Read device configuration from file. This approach is useful when you want to
spawn QEMU process with many command line options but you don’t want to
exceed the command line character limit.

Chapter 3: QEMU PC System emulator 44

-writeconfig file

Write device configuration to file. The file can be either filename to save com-
mand line and device configuration into file or dash -) character to print the
output to stdout. This can be later used as input file for -readconfig option.

-nodefconfig

Normally QEMU loads configuration files from sysconfdir and datadir at
startup. The -nodefconfig option will prevent QEMU from loading any of
those config files.

-no-user-config

The -no-user-config option makes QEMU not load any of the user-provided
config files on sysconfdir, but won’t make it skip the QEMU-provided config
files from datadir.

-trace [events=file][,file=file]

Specify tracing options.

events=file

Immediately enable events listed in file. The file must contain one
event name (as listed in the trace-events file) per line. This option
is only available if QEMU has been compiled with either simple or
stderr tracing backend.

file=file

Log output traces to file.

This option is only available if QEMU has been compiled with the
simple tracing backend.

-enable-fips

Enable FIPS 140-2 compliance mode.

-msg timestamp[=on|off]

prepend a timestamp to each log message.(default:on)

-dump-vmstate file

Dump json-encoded vmstate information for current machine type to file in file
Generic object creation

-object typename[,prop1=value1,...]

Create a new object of type typename setting properties in the order they are
specified. Note that the ’id’ property must be set. These objects are placed in
the ’/objects’ path.

-object

memory-backend-file,id=id,size=size,mem-path=dir,share=on|off

Creates a memory file backend object, which can be used to back
the guest RAM with huge pages. The id parameter is a unique
ID that will be used to reference this memory region when con-
figuring the -numa argument. The size option provides the size
of the memory region, and accepts common suffixes, eg 500M. The
mem-path provides the path to either a shared memory or huge page

Chapter 3: QEMU PC System emulator 45

filesystem mount. The share boolean option determines whether
the memory region is marked as private to QEMU, or shared. The
latter allows a co-operating external process to access the QEMU
memory region.

-object rng-random,id=id,filename=/dev/random

Creates a random number generator backend which obtains entropy
from a device on the host. The id parameter is a unique ID that
will be used to reference this entropy backend from the virtio-rng
device. The filename parameter specifies which file to obtain en-
tropy from and if omitted defaults to /dev/random.

-object rng-egd,id=id,chardev=chardevid

Creates a random number generator backend which obtains entropy
from an external daemon running on the host. The id parameter
is a unique ID that will be used to reference this entropy backend
from the virtio-rng device. The chardev parameter is the unique
ID of a character device backend that provides the connection to
the RNG daemon.

This is how it’s used in anger
$ /usr/bin/qemu-system-x86_64 -machine accel=kvm -name boxes-unknown -S -machine pc-i440fx-1.6,accel=kvm,usb=off -cpu \
Penryn -m 3115 -realtime mlock=off -smp 4,sockets=1,cores=4,threads=1 -uuid 8bd53789-adab-484f-8c53-a6df9d5f1dbf -no-u\
ser-config -nodefaults -chardev socket,id=charmonitor,path=/home/guillaume/.config/libvirt/qemu/lib/boxes-unknown.moni\
tor,server,nowait -mon chardev=charmonitor,id=monitor,mode=control -rtc base=utc,driftfix=slew -global kvm-pit.lost_ti\
ck_policy=discard -no-shutdown -global PIIX4_PM.disable_s3=1 -global PIIX4_PM.disable_s4=1 -boot strict=on -device ich\
9-usb-ehci1,id=usb,bus=pci.0,addr=0x5.0x7 -device ich9-usb-uhci1,masterbus=usb.0,firstport=0,bus=pci.0,multifunction=o\
n,addr=0x5 -device ich9-usb-uhci2,masterbus=usb.0,firstport=2,bus=pci.0,addr=0x5.0x1-device ich9-usb-uhci3,masterbus=u\
sb.0,firstport=4,bus=pci.0,addr=0x5.0x2 -device virtio-serial-pci,id=virtio-serial0,bus=pci.0,addr=0x6 -device usb-cci\
d,id=ccid0 -drive file=/home/guillaume/.local/share/gnome-boxes/images/boxes-unknown,if=none,id=drive-ide0-0-0,format=\
qcow2,cache=none -device ide-hd,bus=ide.0,unit=0,drive=drive-ide0-0-0,id=ide0-0-0,bootindex=1 -drive if=none,id=drive-\
ide0-1-0,readonly=on,format=raw -device ide-cd,bus=ide.1,unit=0,drive=drive-ide0-1-0,id=ide0-1-0 -netdev tap,fd=23,id=\
hostnet0 -device rtl8139,netdev=hostnet0,id=net0,mac=52:54:00:db:56:54,bus=pci.0,addr=0x3 -chardev spicevmc,id=charsma\
rtcard0,name=smartcard -device ccid-card-passthru,chardev=charsmartcard0,id=smartcard0,bus=ccid0.0 -chardev pty,id=cha\
rserial0 -device isa-serial,chardev=charserial0,id=serial0 -chardev spicevmc,id=charchannel0,name=vdagent -device virt\
serialport,bus=virtio-serial0.0,nr=1,chardev=charchannel0,id=channel0,name=com.redhat.spice.0 -device usb-tablet,id=in\
put0 -spice port=5901,addr=127.0.0.1,disable-ticketing,image-compression=off,seamless-migration=on -device qxl-vga,id=\
video0,ram_size=67108864,vram_size=67108864,vgamem_mb=16,bus=pci.0,addr=0x2 -device AC97,id=sound0,bus=pci.0,addr=0x4 \
-chardev spicevmc,id=charredir0,name=usbredir -device usb-redir,chardev=charredir0,id=redir0 -chardev spicevmc,id=char\
redir1,name=usbredir -device usb-redir,chardev=charredir1,id=redir1 -chardev spicevmc,id=charredir2,name=usbredir -dev\
ice usb-redir,chardev=charredir2,id=redir2 -chardev spicevmc,id=charredir3,name=usbredir -device usb-redir,chardev=cha\
rredir3,id=redir3 -incoming fd:20 -device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x7 -msg timestamp=on

QMP is even bigger
126 commands + 33 events
More than 700 named arguments and results
Defined in the (book-sized) QAPI/QMP schema

0 5 10 15 20 25 30

qemu-doc.texi
Gospel of Luke
QMP schema
Genesis

#words [thousands]

Command line evolves fast

1.6
2013-08

1.7 2.0 2.1 2.2 2.3
2015-08
2.4

30

35

40

45

300

350

400

450

Pa
ge
s
in

m
an
ua
l

+20%
p.a.

Li
ne
s
in

-h
el

p

QMP evolves faster

1.6
2013-08

1.7 2.0 2.1 2.2 2.3
2015-08
2.4

120

140

160

12,000

14,000

16,000

18,000

20,000

22,000

Co
m
m
an
ds

+
Ev

en
ts

+25%
p.a.!

W
or
ds

in
Sc
he
m
a

Why interface introspection?

QEMU provides big, rapidly evolving interfaces
A program can

Tie to a specific build of QEMU
Wrong talk, you can break for coffee now
Figure out what the QEMU it got can do
Easiest when interfaces support introspection

Trouble is our interfaces don’t fully support it, yet

Part II
Prior work

Version numbers?
QEMU says 0.12.1, but. . .

base
2009-12

6.0 6.1 6.2 6.3 6.4 6.5 6.6
2015-06
6.7

50

100

150

200

400

600

800

+250%

UpstreamRHEL-6

Co
m
m
an
ds

+
Ev

en
ts

+35% Li
ne
s
in

-h
el

p

Backports make the upstream version meaningless

Downstream version?

We provide for downstreams adding their version
But: not always stepped
 Downstream version often meaningless, too
Even if it wasn’t:
#downstreams × #releases = heaps of versions
Upstream wise guy shrugs “downstream problem”

Version numbers insufficient!

Upstream 2.4 development cycle:
$ git-diff --shortstat v2.3.0..v2.4.0
1414 files changed, 72635 insertions(+),
25875 deletions(-)

$ git-log --oneline v2.3.0..v2.4.0 | wc -l
2147

Version for 1901 out of 2147 commits: 2.3.50
Development can’t wait for the version to change!
Upstream wise guy gets enlightened

Just try to use it

Workable in simple cases
Example: libvirt tries QMP inject-nmi,

falls back to old HMP nmi

Complex, slow, fragile in not so simple cases
Recovery may need to recognize exact error
Probe by trying may need complex scaffolding
Probe must avoid unwanted effects

A real-world failure of “just try”

block-commit new in v1.3, and libvirt just tried it:
Run block-commit, and if it succeeds
wait for event BLOCK_JOB_COMPLETED

Before v2.0, block-commit fails for active layer
Since then, it succeeds, but requires manual

block-job-complete to complete

 Old libvirt hangs on BLOCK_JOB_COMPLETED

Relying on behaviour in error cases is fragile

Pretend to be human: read help

Examples: -help
-device help
-device virtio-net,help
-drive format=help

Drawbacks:
Parsing help is painful and fragile
Help text becomes de facto ABI
Help is incomplete (e.g. no -drive if=help)

Everyone did this until QEMU grew real interfaces

QMP query-commands

Example:
QMP> { "execute":"query-commands" }
{ "return":[. . . { "name":"eject" }, . . .] }

This is very limited QMP interface introspection:
can check presence of commands
silent on arguments & results

Plenty useful, but we need arguments & results now

QMP query-command-line-options

Example:
QMP> { "execute":"query-command-line-options" }
{ "return":[. . .
{ "option":"memory", "parameters":[
{ "name":"slots", "type":"number" },
{ "name":"size", "type":"size" }],
. . . }] }

This tries to be command line introspection
What’s wrong with it? Dear God, where to begin!

query-c-l-options is incomplete

some parameters
name wrong

complete
missing, inessential

missing, no excuse

no parameters

Probably better than nothing
Certainly less than needed

query-c-l-options is inexpressive

Things we’d like to know, but it can’t tell:
Formats supported by -drive?
It only tells us parameter format is “string”
Parameters supported with -chardev socket?
It tells us parameters supported by any backend

Structural weaknesses
Worse than merely incomplete

Look for a witness

Example: how libvirt probes for -spice
New in v0.14
No query-command-line-options back then
With -spice, we added QMP query-spice
Can probe that one with query-commands
Use query-spice as a witness for -spice

Useful when direct probe is impractical
and a suitable witness exists

Add an ad hoc query command

9
♣

9
♣

9
♣

9
♣

♣
♣

♣
♣

ch
ar
de
v-

ba
ck
en
ds

chardev-

backends

8
♥

8
♥

8
♥

8
♥

♥ ♥
♥ ♥

cp
u-
de
fin

it
io
ns

cpu-

definitions

7
♠

7
♠

7
♠

7
♠

♠ ♠
♠ ♠du

m
p-
gu

es
t-

m
em

or
y-

ca
pa

bi
lit
y

dum
p-guest-

m
em

ory-

capability

6
♦

6
♦

6
♦

6
♦

♦ ♦
♦ ♦

kv
m

kvm

5
♣

5
♣

5
♣

5
♣

♣ ♣
♣ ♣

m
ac
hi
ne

s m
achines

4
♥

4
♥

4
♥

4
♥

♥ ♥

♥ ♥

m
ig
ra
te
-

ca
pa

bi
lit
ie
s

m
igrate-

capabilities

3
♠

3♠

3♠

3♠

♠

♠

tp
m
-m

od
el
s

tpm
-m

odels

2
♦

2♦

2
♦

2♦

♦

♦

tp
m
-t
yp
es

tpm
-types

Deck of

Queries

Deck of

Queries

Deck of

Queries

Deck of

Queries

Deck of

Queries

Got several already
How many more?

Add an ad hoc query command

9
♣

9
♣

9
♣

9
♣

♣
♣

♣
♣

ch
ar
de
v-

ba
ck
en
ds

chardev-

backends

8
♥

8
♥

8
♥

8
♥

♥ ♥
♥ ♥

cp
u-
de
fin

it
io
ns

cpu-

definitions

7
♠

7
♠

7
♠

7
♠

♠ ♠
♠ ♠du

m
p-
gu

es
t-

m
em

or
y-

ca
pa

bi
lit
y

dum
p-guest-

m
em

ory-

capability

6
♦

6
♦

6
♦

6
♦

♦ ♦
♦ ♦

kv
m

kvm

5
♣

5
♣

5
♣

5
♣

♣ ♣
♣ ♣

m
ac
hi
ne

s m
achines

4
♥

4
♥

4
♥

4
♥

♥ ♥

♥ ♥

m
ig
ra
te
-

ca
pa

bi
lit
ie
s

m
igrate-

capabilities

3
♠

3♠

3♠

3♠

♠

♠

tp
m
-m

od
el
s

tpm
-m

odels

2
♦

2♦

2
♦

2♦

♦

♦

tp
m
-t
yp
es

tpm
-types

JOKER

JOKER

Got several already
How many more?

Can we get a joker instead?

Where do we stand now?

Current introspection solutions work,
but won’t cut it much longer:

query-command-line-options
too incomplete and inexpressive
query-commands too limited
we need arguments & results
Adding a query-FOO for every FOO
will result in a mess

Time to crack QMP introspection for real!

Part III
QMP Introspection

The basic idea
Interface introspection turns interface into data
QMP is defined by QAPI schema
Schema is data, so let clients query for it!
However:

Geared towards humans, not machines
Mixes up ABI aspects and internal detail

Instead of simply dumping QAPI schema:
Expose only its QMP wire ABI aspects
Design query output for machines

Cooking: query-schema
Coming in v2.5:
QMP> { "execute":"query-schema" }
{"return":[. . . {"name": "eject", . . .] }

Exposes QMP wire ABI as defined in the schema:
Commands, events with arguments & results
Arguments & results fully typed
Enumerations (find supported values)
Variants records
. . .

By yours truly, with heaps of help from Eric Blake

Let’s introspect a command
QAPI Schema for query-block:
{ ’command’: ’query-block’,

’returns’: [’BlockInfo’] }

Relevant part of query-schema’s return:
{ "name":"query-block",

"meta-type":"command",
"arg-type":"15", "ret-type":"101" },

{ "name":"15", "meta-type":"object",
"members":[] },

{ "name":"101", "meta-type":"array",
"element-type":"183" }

Let’s introspect a command
QAPI Schema for query-block:
{ ’command’: ’query-block’’command’: ’query-block’,

’returns’: [’BlockInfo’] }

Relevant part of query-schema’s return:
{ "name":"query-block""name":"query-block",

"meta-type":"command""meta-type":"command",
"arg-type":"15", "ret-type":"101" },

{ "name":"15", "meta-type":"object",
"members":[] },

{ "name":"101", "meta-type":"array",
"element-type":"183" }

“query-block”
is a command

Let’s introspect a command
QAPI Schema for query-block:
{ ’command’: ’query-block’, # no arguments# no arguments

’returns’: [’BlockInfo’] }

Relevant part of query-schema’s return:
{ "name":"query-block",

"meta-type":"command",
"arg-type":"15""arg-type":"15", "ret-type":"101" },

{ "name":"15", "meta-type":"object",{ "name":"15", "meta-type":"object",
"members":[] },"members":[] },

{ "name":"101", "meta-type":"array",
"element-type":"183" }

It has an empty argument type
(normalized from no arguments)

Let’s introspect a command
QAPI Schema for query-block:
{ ’command’: ’query-block’,

’returns’: [’BlockInfo’]’returns’: [’BlockInfo’] }

Relevant part of query-schema’s return:
{ "name":"query-block",

"meta-type":"command",
"arg-type":"15", "ret-type":"101""ret-type":"101" },

{ "name":"15", "meta-type":"object",
"members":[] },

{ "name":"101", "meta-type":"array",{ "name":"101", "meta-type":"array",
"element-type":"183" }"element-type":"183" }

Return type is array of BlockInfo

Let’s introspect a command
QAPI Schema for query-block:
{ ’command’: ’query-block’,

’returns’: [’BlockInfo’] }

Relevant part of query-schema’s return:
{ "name":"query-block",

"meta-type":"command",
"arg-type":"15", "ret-type":"101" },

{ "name":"15", "meta-type":"object",
"members":[] },

{ "name":"101", "meta-type":"array",
"element-type":"183""183" }

Type name
’BlockInfo’ masked

(not ABI)

Let’s introspect a command
QAPI Schema for query-block:
{ ’command’: ’query-block’,

’returns’: [’BlockInfo’] }

Relevant part of query-schema’s return:
{ "name":"query-block",

"meta-type":"command",
"arg-type":"15", "ret-type":"101" },

{ "name":"15", "meta-type":"object",
"members":[] },

{ "name":"101", "meta-type":"array",
"element-type":"183" }

Tediously explicit

Let’s introspect introspection!
QAPI Schema for query-schema:
{ ’command’: ’query-schema’,

’returns’: [’SchemaInfo’’SchemaInfo’] }

Relevant part of query-schema’s return:
{ "name":"query-schema",

"meta-type":"command",
"arg-type":"15", "ret-type":"129" },

{ "name":"15", "meta-type":"object",
"members":[] },

{ "name":"129", "meta-type":"array",
"element-type":"203""element-type":"203" }

Like query-block,
with SchemaInfo

instead of
BlockInfo

Drill down into SchemaInfo
{ ’union’: ’SchemaInfo’,

’base’: ’SchemaInfoBase’,
’discriminator’: ’meta-type’,
’data’: {

’command’: ’SchemaInfoCommand’,
’enum’: ’SchemaInfoEnum’,
’object’: ’SchemaInfoObject’,
. . . } }

{ ’struct’: ’SchemaInfoBase’,
’data’: { ’name’: ’str’,
’meta-type’: ’SchemaMetaType’ } }

{ ’enum’: ’SchemaMetaType’,
’data’: [’builtin’, ’enum’, ’array’, ’object’,

’alternate’, ’command’, ’event’] }

Drill down into SchemaInfo
{ ’union’: ’SchemaInfo’,

’base’: ’SchemaInfoBase’,
’discriminator’: ’meta-type’,
’data’: {

’command’: ’SchemaInfoCommand’,
’enum’: ’SchemaInfoEnum’,
’object’: ’SchemaInfoObject’,
. . . } }

{ ’struct’: ’SchemaInfoBase’,
’data’: { ’name’: ’str’,
’meta-type’: ’SchemaMetaType’ } }

{ ’enum’: ’SchemaMetaType’,
’data’: [’builtin’, ’enum’, ’array’, ’object’,

’alternate’, ’command’, ’event’] }

QAPI schema gobbledygook decoded:

SchemaInfo is a variant record
Common members: name, meta-type
Variant members depend on meta-type:
meta-type variant members
command arg-type, ret-type
array element-type
object members, tag, variants
. . .

Introspect SchemaInfo
{ "name":"203", "meta-type":"object",

"members":
[{ "name":"name", "type":"str" },
{ "name":"meta-type", "type":"271" }],

"tag":"meta-type",
"variants":

[{ "case":"builtin", "type":"272" },
{ "case":"enum", "type":"273" },
{ "case":"array", "type":"274" },
{ "case":"object", "type":"275" },
{ "case":"alternate", "type":"276" },
{ "case":"command", "type":"277" },
{ "case":"event", "type":"278" }] }

Introspect SchemaInfo
{ "name":"203", "meta-type":"object","meta-type":"object",

"members":
[{ "name":"name", "type":"str" },
{ "name":"meta-type", "type":"271" }],

"tag":"meta-type",
"variants":

[{ "case":"builtin", "type":"272" },
{ "case":"enum", "type":"273" },
{ "case":"array", "type":"274" },
{ "case":"object", "type":"275" },
{ "case":"alternate", "type":"276" },
{ "case":"command", "type":"277" },
{ "case":"event", "type":"278" }] }

It’s an object type

Introspect SchemaInfo
{ "name":"203", "meta-type":"object",

"members""members":
[{ "name":"name""name", "type":"str" },
{ "name":"meta-type""meta-type", "type":"271" }],

"tag":"meta-type",
"variants":

[{ "case":"builtin", "type":"272" },
{ "case":"enum", "type":"273" },
{ "case":"array", "type":"274" },
{ "case":"object", "type":"275" },
{ "case":"alternate", "type":"276" },
{ "case":"command", "type":"277" },
{ "case":"event", "type":"278" }] }

It has a name and a meta-type (always)

Introspect SchemaInfo
{ "name":"203", "meta-type":"object",

"members":
[{ "name":"name", "type":"str" },
{ "name":"meta-type""meta-type", "type":"271" }],

"tag":"meta-type""tag":"meta-type",
"variants""variants":

[{ "case":"builtin", "type":"272" },
{ "case":"enum", "type":"273" },
{ "case":"array", "type":"274" },
{ "case":"object", "type":"275" },
{ "case":"alternate", "type":"276" },
{ "case":"command", "type":"277" },
{ "case":"event", "type":"278" }] }

It has variants,
and this is their tag

Introspect SchemaInfo
{ "name":"203", "meta-type":"object",

"members":
[{ "name":"name", "type":"str" },
{ "name":"meta-type", "type":"271""type":"271" }],

"tag":"meta-type",
"variants":

[{ "case":"builtin""builtin", "type":"272" },
{ "case":"enum""enum", "type":"273" },
{ "case":"array""array", "type":"274" },
{ "case":"object""object", "type":"275" },
{ "case":"alternate""alternate", "type":"276" },
{ "case":"command""command", "type":"277" },
{ "case":"event""event", "type":"278" }] }

Each case applies to a
value of the tag’s type

Introspect SchemaInfo
{ "name":"203", "meta-type":"object",

"members":
[{ "name":"name", "type":"str" },
{ "name":"meta-type", "type":"271" }],

"tag":"meta-type",
"variants":

[{ "case":"builtin", "type":"272""type":"272" },
{ "case":"enum", "type":"273""type":"273" },
{ "case":"array", "type":"274""type":"274" },
{ "case":"object", "type":"275""type":"275" },
{ "case":"alternate", "type":"276""type":"276" },
{ "case":"command", "type":"277""type":"277" },
{ "case":"event", "type":"278""type":"278" }] }

Variant members are
just another object type

The types of its name & tag

{ "name":"str""str",
"meta-type":"builtin""builtin",
"json-type":"string""string" }

{ "name":"271", "meta-type":"enum",
"values":

["builtin", "enum", "array", "object",
"alternate", "command", "event"] }

The name’s type is “str”

It’s a built-in type

and on the wire it’s JSON string

The types of its name & tag

{ "name":"str",
"meta-type":"builtin",
"json-type":"string" }

{ "name":"271", "meta-type":"enum""enum",
"values":

["builtin", "enum", "array", "object","builtin", "enum", "array", "object",
"alternate", "command", "event""alternate", "command", "event"] }

Tag’s type is an enumeration

with these members

SchemaInfo’s enum variant

{ "name":"273",
"meta-type":"object""object",
"members":

[{ "name":"values""values", "type":"270" }] },

{ "name":"270", "meta-type":"array",
"element-type":"str" }

The case’s type is an object type

It has just one member “values”

SchemaInfo’s enum variant

{ "name":"273",
"meta-type":"object",
"members":

[{ "name":"values", "type":"270""270" }] },

{ "name":"270""270", "meta-type":"array""array",
"element-type":"str""str" }

The type of “values” is array of str

Quick peek under the hood

QAPI schema is compile time static so far
SchemaInfo is generated from it
Generator is 160 SLOC of Python
The necessary refactoring of core, however. . .
Complete info is a bit over 70KiB
Should probably support caching it
(put hash in QMP greeting)
Still work in progress
http://repo.or.cz/qemu/armbru.git
qapi-introspect

http://repo.or.cz/qemu/armbru.git

Part IV
Future work

QMP introspection limitations

Known issues:
Can see only qapified commands
 Can’t see device_add
Can see only qapified arguments & results
We cheat for netdev_add. . .
 Can’t see most of netdev_add’s arguments
Only as good as the qapification
add_client takes arguments protocol, tls
tls accepted only when protocol supports it
 Can’t see which protocols support TLS

Clean up qapification of netdev_add

Need to
qapify its type-specific arguments. . .
without upsetting the QMP wire format

Wire format matches QAPI/QMP’s flat union type
Possible solution:

Support unions as command arguments
Code up the matching flat union type

Qapify device_add
Wire format like netdev_add:

common + driver-specific arguments
But: drivers collected only at run time!

QAPI schema fixed at compile time. . .
Choices:

Collect drivers at compile time? Hard. . .
Make QAPI schema dynamic? Hard. . .
Forgo driver-specific arguments in schema?
Defeats introspection. . .

No conclusion, yet

QAPI follow-up work
On the way to introspection, we

got ourselves real test coverage
replaced our internal schema representation
fixed many bugs, and marked more as FIXME
plugged many documentation holes

Left to do:
Fix the FIXMEs
Finish transition to new internal representation
Clean up schema language and generated code
Review schema for imprecise qapifications

What about command line?
Introspection needs the interface as data
Good: our command line definition is data
Bad: not QAPI, less expressive, leaves more to code
Choices:

Build non-QAPI command line introspection?
Only as good as the data. . .
Rebase command line onto QAPI? Hard. . .
Use QMP introspection as witness instead?
Assumes suitable witness exists. . .

No conclusion, yet

Questions?

	What's the problem?
	Prior work
	QMP Introspection
	Future work

