
Securing secure boot with
System Management Mode

Paolo Bonzini
Red Hat, Inc.
KVM Forum 2015

Paolo Bonzini – KVM Forum 2015

Outline

● UEFI overview

● Secure boot and SMM

● Chipset support: QEMU

● Hypervisor support: KVM

Paolo Bonzini – KVM Forum 2015

What is UEFI?

● “A replacement for BIOS that's designed to
improve software interoperability” – Microsoft
● Modular architecture with reusable components

(e.g. SCSI and network stacks)

● Portable drivers

● “BIOS documentation was bad, but this time
we produced a 10,000 page spec” – me

● “We missed DOS so much that we burnt it into
your ROM” – Matthew Garrett

Paolo Bonzini – KVM Forum 2015

UEFI phases – Boot

SEC
“Secure” phase
Configure memory controller, enable caches
Runs from ROM, decompressing the rest

PEI
Pre-EFI Initialization
Initialize chipset
Handle S3 resume

DXE
Driver eXecution Environment
Discover hardware
Select boot device (BDS phase)

RT
Run-time services
Available while OS runs

Paolo Bonzini – KVM Forum 2015

UEFI phases – S3 resume

SEC

DXE

PEI

RT

SEC

PEI

RT

Paolo Bonzini – KVM Forum 2015

What's secure boot?

● Firmware-verified chain of trust until OS loads

● OS handles the chain of trust after boot
● Enforce signing for all code running in the kernel

(e.g. kernel modules)

● Enforce signing for device firmware (especially if
firmware is not checked by the device)

● Non-privileged code should not be able to run
arbitrary unsigned ring-0 code (e.g. via /dev/mem)

● OS should not be able to inject arbitrary code
into the firmware!

Paolo Bonzini – KVM Forum 2015

How can the OS attack the firmware?

● PEI S3 resume uses data from DXE
● CPU data (MSRs, control registers, …)

● S3 bootscript to initialize other devices

● Run-time services must access flash to provide
persistent variable storage
● Variable storage includes the keys used to enforce

secure boot!

● Changes to “trusted” variables must be signed by a
higher-level key

Paolo Bonzini – KVM Forum 2015

The OS can compromise
everything else!

UEFI phases – Communication

SEC

DXE

PEI

RT

SEC

PEI

RT

RAM
NVRAM (NOR flash)

SEC

DXE

PEI

RT

SEC

PEI

RT

RAM
NVRAM (NOR flash)

Paolo Bonzini – KVM Forum 2015

System Management Mode

● First introduced in 1990 (80386SL)

● Lets the chipset interrupt the running program
with arbitrary code by asserting SMI#
● OUT to port 0B2h usually triggers an SMI

● Processor state is stored in RAM, execution
starts at a known address (SMBASE+8000h)
● SMBASE=30000h on startup

● SMBASE can be changed by the SMM handler

● The RSM instruction resumes normal
execution

Paolo Bonzini – KVM Forum 2015

System Management Mode: SMRAM

● The chipset can keep some RAM hidden to
processors not in SMM
● Originally the 128K at A0000h were used

● Usually shadowed by video memory if not in SMM

● On modern chipsets, up to 8MB of memory below
4GB (“TSEG”) can be reserved for SMM

● SMRAM and TSEG configuration can be
locked
● No-tampering guarantee!

Paolo Bonzini – KVM Forum 2015

Securing secure boot!

SEC

DXE

PEI

RT

SEC

PEI

RT

SMRAM
NVRAM (NOR flash)

Paolo Bonzini – KVM Forum 2015

Attacking secure boot: SMI handler

● VU#127284: accessing RAM from SMM (2009)

movq 0x407d(%rip),%rax ;; TSEG
callq *0x18(%rax) ;; RAM

● VU#976132: “All of the available systems we
evaluated stored boot script in unprotected
ACPI NVS” (2014)

“The only system we identified that used the
SMM lockbox to protect the boot script was a
UEFI development motherboard […] It
dispatched functions in unprotected ACPI
NVS”

Paolo Bonzini – KVM Forum 2015

Attacking secure boot: insecure hardware!

● Caching attacks
● Mark SMRAM as writeback-cached, pollute cache,

generate SMI

● Newer processors have SMRR (SMM memory
range register)

● Does not apply under virtualization

● Chipset attacks
● On Q35 TSEG size can be locked, but TSEG base

cannot!

● Not vulnerable due to incomplete chipset emulation

Paolo Bonzini – KVM Forum 2015

Attacking secure boot: insecure hardware!

● Unprotected NOR flash
● Flash access should only be allowed from SMM…

except if firmware forgot to set that bit to 1

● This matters for virtual machines too

● Interrupt descriptor table
● Somehow force SMI handler to take an exception

● Recent processors reset IDT limit to 0

● Undocumented, but KVM has to do the same!

http://www.ssi.gouv.fr/uploads/IMG/pdf/IT_Defense_2010_final.pdf

http://www.ssi.gouv.fr/uploads/IMG/pdf/IT_Defense_2010_final.pdf

Paolo Bonzini – KVM Forum 2015

Securing OVMF

● Assume firmware has no bugs :-)

● KVM must:
● Perform SMM world switch (SMI, RSM)

● Hide SMRAM to processors not in SMM

● QEMU must:
● Implement required chipset registers

● Protect flash from processors not in SMM

● Support KVM extensions for SMM (and TCG)

● Target: Q35 (440FX SMRAM too small)

Paolo Bonzini – KVM Forum 2015

QEMU: What is missing?

● Q35-specific SMRAM features
● TSEG

● SMRAM locking

● Per-CPU visibility of SMRAM
● Avoid races on SMP guests

● Flash protection

Paolo Bonzini – KVM Forum 2015

QEMU: What is there already?

● Basic support for SMRAM at 0xA0000

● All registers reside in PCI configuration space:
migration format won't change

● TCG support for per-CPU address spaces

Paolo Bonzini – KVM Forum 2015

QEMU: Flash access

● Q35 uses memory-mapped NOR flash
● Writes to flash put it in “device mode”

● On real hardware, writes also trigger an SMI; the
SMI handler puts the flash back in ROM mode

● Complicated and prone to races

● Newer chipsets work around the races with even
more complicated protocols

● Can we do anything simpler?

Paolo Bonzini – KVM Forum 2015

QEMU: Flash access

● Discard writes to flash outside SMM mode
● Flash remains in ROM mode

● OVMF does not need a special SMI handler

● Easily implemented with QEMU “memory
transaction attributes”
● TCG: tlb_set_page_with_attrs

● KVM: pass “in SMM?” flag via struct kvm_run,
read it on KVM_EXIT_MMIO/KVM_EXIT_IO

● Avoids non-standard extensions to Q35
registers

Paolo Bonzini – KVM Forum 2015

Modeling SMRAM (board)

0xA0000

0x0

0xC0000

TSEG base (TOLUD - TSEG_SIZE)

Top of low usable DRAM (TOLUD)

RAM

RAM

get_system_memory() /machine/smram

open SMRAM,
TSEG_SIZE=0

RAM

RAM

VRAM

Zeros
(MMIO)

RAM

RAM

Paolo Bonzini – KVM Forum 2015

VRAM

Zeros
(MMIO)

Modeling SMRAM (TCG)

0xA0000

0x0

0xC0000

TSEG base (TOLUD - TSEG_SIZE)

Top of low usable DRAM (TOLUD)

RAM

RAM

VRAM

Zeros
(MMIO)

get_system_memory()

RAM

RAM

/machine/smram CPU

RAM

RAM

RAM

RAM

SMM active

+ =

Paolo Bonzini – KVM Forum 2015

KVM design

● Per-CPU address space too expensive
● O(#vcpus) syscalls on every memory map change

● O(#vcpus) higher cost of retrieving dirty bitmap

● Define 2 memory maps (“address spaces”)
shared by all VCPUs
● Appropriate address space for VCPU chosen

according to current mode

● Pass address space id to KVM_GET_DIRTY_LOG
and KVM_SET_MEMORY_REGION

● QEMU: one MemoryListener per address space

Paolo Bonzini – KVM Forum 2015

Modeling SMRAM (KVM)

0xA0000

0x0

0xC0000

TSEG base (TOLUD - TSEG_SIZE)

Top of low usable DRAM (TOLUD)

RAM

RAM

get_system_memory()

RAM

RAM

/machine/smram SMM

RAM

RAM+ =

RAM

RAM

VRAM

Zeros
(MMIO)

open SMRAM,
TSEG_SIZE=0

RAM

RAM

Paolo Bonzini – KVM Forum 2015

KVM implementation: generic code

● New functions:
__kvm_memslots(struct kvm *, int as_id)

kvm_vcpu_gfn_to_memslot
kvm_vcpu_gfn_to_hva
kvm_vcpu_gfn_to_pfn
kvm_vcpu_gfn_to_page
kvm_vcpu_read_guest_page
kvm_vcpu_read_guest
...

● New architecture-specific hook:
kvm_vcpu_memslots(struct kvm_vcpu *vcpu);

Paolo Bonzini – KVM Forum 2015

KVM implementation: x86 MMU

● Use kvm_vcpu_* functions where appropriate

● SMM added to shadow page “role”

● The role acts as the hash key
● GPA→HVA mapping for arbitrary SPTEs

● Special memory regions must be added to all
address spaces

● Identity page table
● APIC access page
● Real-mode TSS

Paolo Bonzini – KVM Forum 2015

KVM implementation: world switch

● New ioctl: KVM_SMI

● 64-bit version different between Intel and AMD
● QEMU uses AMD format

● Tiano Core expects Intel format

● Intel doesn't document part of the state!
● Segment descriptor caches

● TR base/limit

● Therefore, KVM uses AMD format

● Nested VMX/SVM state not saved

Paolo Bonzini – KVM Forum 2015

State

● QEMU: released in 2.4

● KVM: released in Linux 4.2

● OVMF: patches under review
● 97 files changed, 17631 insertions, 587 deletions

● SMM core from Intel Quark SDK
● 32-bit only
● Uniprocessor guest only

● TCG: qemu-system-i386

● KVM: -cpu model,-lm,-nx

Paolo Bonzini – KVM Forum 2015

Acknowledgements

● Laszlo Ersek (OVMF)

● Gerd Hoffmann (Q35)

● Radim Krčmář, Xiao Guangrong (KVM review)

● Michael S. Tsirkin (QEMU review)

Paolo Bonzini – KVM Forum 2015

Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

