
Towards multi-
threaded TCG

Alex Bennée
alex.bennee@linaro.org

KVM Forum 2015

mailto:alex.bennee@linaro.org


Introduction



Hello!
Alex Bennée
Works for Linaro
IRC: stsquad/ajb-linaro
Mostly ARM emulation, a little KVM on the side
Uses Emacs



What is multi-threaded TCG?



TCG?
Tiny Code Generator
Running non-native code on your desktop



Current process model



How it looks



Multi-threaded TCG



Reality?



Why do we want it?



Living in a Multi-core world



Raspberry Pi 2

Quad-core Cortex A7 @900Mhz

$25



Dragonboard 410c

Quad-core Cortex A53 @ 1.4Ghz

$75



Nexus 5

Quad Core Krait 400 @ 2.26Ghz

$339



My Desktop

Intel i7 (4 core + 4 hyperthreads) @ 3.4 Ghz

$600



Build Server

2 x Intel Xeon (6+6 hyperthreads) @ 3.46 Ghz

$2-3k



Android Emulation

Android emulator uses QEMU as base
Most modern Android devices are multi-core



Per-core performance

via @HenkPoly



Other reasons to care



Using QEMU for System bring up
Increasingly used for prototyping

new multi-core systems
new heterogeneous systems

Want concurrent behaviour
Bad software should fail in QEMU!



As a development tool
Instrumentation and inspection
Record and playback
Reverse debugging



Cross Tooling



Building often complex

http://lukeluo.blogspot.co.uk/2014/01/linux-from-scratch-for-
cubietruck-c4.html

http://lukeluo.blogspot.co.uk/2014/01/linux-from-scratch-for-cubietruck-c4.html


Just use qemu-linux-user?
Make sure binfmt_misc setup
Mess around with multilib/chroots
Hope threads/signals not used



Or boot a multi-core system



Things in our way
Global State in QEMU
Guest Memory Models



Global State
Numerous globals in TCG generation
TCG Runtime Structures
Device emulation structures



Guest Memory models
Atomic behaviour
LL/SC Semantics
Memory barriers



How can we do it?



3 broad approaches



Use threads/locks



Use processes/IPC

http://ipads.se.sjtu.edu.cn/_media/publications/coremu-
ppopp11.pdf

http://ipads.se.sjtu.edu.cn/_media/publications/coremu-ppopp11.pdf


Re-write from scratch



Pros/Cons of each approach

Aproach Threads/Locks Process/IPC Re-write

Pros Performance Correctness Shiny and
New!

Cons Performance,
Complexity

Performance,
Invasive

Wasted
Legacy, New
problems



What we have done
Protected code generation
Serialised the run loop

translated code multi-threaded
New memory semantics
Multi-threaded device emulation



Things in our way
Global State in QEMU
Guest Memory Models



Code generator globals
Threads

TCG Variables
vCPU 1

cpu_V0write

vCPU 2

write

read

read



TCG Runtime structures
SoftMMU TLB
Translation Buffer Jump Cache
Condition Variables (tcg_halt_cond)
Flags (exit_request)



per-CPU variables
tcg_halt_cond -> cpu->halt_cond
exit_request -> cpu->exit_request



Quick reminder of how TCG works



Code Generation
target machine code
intermediate form (TCG ops)
generate host binary code



Input Code
ldr     r2, [r3]
add     r2, r2, #1
str     r2, [r3]
bx      lr



TCG Ops
mov_i32 tmp5,r3
qemu_ld_i32 tmp6,tmp5,leul,3
mov_i32 r2,tmp6

movi_i32 tmp5,$0x1
mov_i32 tmp6,r2
add_i32 tmp6,tmp6,tmp5
mov_i32 r2,tmp6

mov_i32 tmp5,r3
mov_i32 tmp6,r2
qemu_st_i32 tmp6,tmp5,leul,3

exit_tb $0x7ff368a0baab



Output Code
mov    (%rsi),%ebp
inc    %ebp
mov    %ebp,(%rsi)



Basic Block



Block Chaining
block

prologue
code
exit 1
exit 2

block
prologue

code
exit 1
exit 2

block
prologue

code
exit 1
exit 2

block
prologue

code
exit 1
exit 2



TCG Global State
Code generation globals
Global runtime



Translated code is safe
Only accesses vCPU structures
We need to careful leaving the translated code



Exit Destinations
Back to Run Loop
Helper Function



Exit to run loop
Enter JIT Code

block
prologue

code
exit 1
exit 2

block
prologue

code
exit 1
exit 2

Return to runloop



Simplified Run Loop



Helper Functions

QEMU C Code
vCPU State

Global State

cpu_tb_exec
block

prologue

code

exit 1
exit 2

Return to runloop

block
prologue

code

exit 1
exit 2

Complex Op

System Op

Registers

Jump Cache



Types of Helper
Complex Operations

should only touch private vCPU state
no locking required*

System Operations
locking for cross-cpu things
some operations affect all vCPUs



Stop the World!
Using locks

expensive for frequently read vCPU structures
complex when modifying multiple vCPUs data

Ensure relevant vCPUs halted, modify at "leisure"



Deferred Work
Existing queued_work mechanism

add work to queue
signal vCPU to exit

New queued_safe_work
waits for all vCPUs to halt
no lock held when run



TCG Summary
Move global vars to per-CPU/Thread

exit and condition variables
Make use of tb_lock

uses existing TCG context tb_lock
protects all code generation/patching
protects all manipulation of tb_jump_cache

Add async safe work mechanism
Defer tasks until all vCPUs halted



Things in our way
Global State in QEMU
Guest Memory Models



No Atomic TCG Ops



Atomic Behaviour is easy when Single Threaded



Considerably harder when Multi-threaded



Load-link/Store-conditional (LL/SC)
RISC alternative to atomic CAS
Multi-instruction sequence
Store only succeeds if memory not touch since link
LL/SC can emulate other atomic operations



LL/SC in QEMU
Introduce new TCG ops

qemu_ldlink_i32/64
qemu_stcond_i32/64

Can be used to emulate
load/store exclusive
atomic instructions



SoftMMU



What it does
Maps guest loads/stores to host memory

uses an addend offset
Fast path in generated code
Slow path in C code

Victim cache lookup
Target page table walk



How it works: Stage one



How it works: Stage two



How it works: Stage three



How does this help with LL/SC?
Introduced new TCG ops

qemu_ldlink_i32/64
qemu_stcond_i32/64

Using the SoftMMU slow path we can implement the
backend in a generic way



LL/SC in Pictures



LL/SC Summary
New TLB_EXCL flag marks page
All access now follows slow-path

trip exclusive flag
Store conditional always slow-path

Will fail if flag tripped



Memory Model Summary
Multi-threading brings a number of challenges
New TCG ops to support atomic-like operations
SoftMMU allows fairly efficient implementation
Memory barriers still an issue.



Device Emulation



KVM already done it ;-)
added thread safety to a number of systems
introduced memory API
introduced I/O thread



TCG access to device memory
All MMIO pages are flagged in the SoftMMU TLB
The slowpath helper passes the access to the memory API
The memory API defines regions of memory as:

lockless (the eventual driver worries about concurrency)
locked with the BQL



Thanks KVM!



Current state



Performance & Demo
Hand over to Frederic



What's left
LL/SC Patches
MTTCG Patches
Memory Barriers
Enabling all front/back ends
Testing & Documentation



LL/SC Patches
Majority of patch set independent from MTTCG
Been through a number of review cycles
Hope to get merged soonish now tree is open

Who/where?

Alvise Rigo of Virtual Open Systems

Latest branch: slowpath-for-atomic-v4-no-mttcg
https://git.virtualopensystems.com/dev/qemu-mt.git

https://git.virtualopensystems.com/dev/qemu-mt.git


MTTCG Patches
Clean-up and rationlisation patches

starting to go into maintainer trees
Delta to full MTTCG reducing

Who/where?

Frederic Konrad of Greensocs

Latest branch: multi_tcg_v7
http://git.greensocs.com/fkonrad/mttcg.git

http://git.greensocs.com/fkonrad/mttcg.git






Memory Barriers
No code yet
Current proposal is one (or two) barrier TCG ops
Hard to trigger barrier issues on x86 backend



Enabling all front/back ends
Current testing is ARM32 on x86
Aim to enable MTTCG on all front/backends
Front-ends need to use new TCG ops
Back-ends need to support new TCG ops

may require incremental updates



Testing & Documentation
Both important for confidence in design
Torture tests

hand-rolled
using kvm-unit-tests

Want to have reference in docs/ on how it should work



Questions?



The End
Thank you



Extra Material



Full TLB Walk Diagram



Annotated TLB Walk Code (In)
0x40000000:  e3a00000      mov  r0, #0  ; 0x0
0x40000004:  e59f1004      ldr  r1, [pc, #4]    ; 0x40000010



Annotated TLB Walk Code (Ops)
---- prologue
ld_i32 tmp5,env,$0xfffffffffffffff4
movi_i32 tmp6,$0x0
brcond_i32 tmp5,tmp6,ne,$L0

---- 0x40000000
movi_i32 tmp5,$0x0
mov_i32 r0,tmp5

---- 0x40000004
movi_i32 tmp5,$0x4000000c
movi_i32 tmp6,$0x4
add_i32 tmp5,tmp5,tmp6
qemu_ld_i32 tmp6,tmp5,leul,1
mov_i32 r1,tmp6



Annotated TLB Walk Code (Opt Op)
OP after optimization and liveness analysis:
 ---- prologue
 ld_i32 tmp5,env,$0xfffffffffffffff4
 movi_i32 tmp6,$0x0
 brcond_i32 tmp5,tmp6,ne,$L0

 ---- 0x40000000
 movi_i32 r0,$0x0

 ---- 0x40000004
 movi_i32 tmp5,$0x40000010
 qemu_ld_i32 tmp6,tmp5,leul,1 (val, addr, index, opc)
 mov_i32 r1,tmp6



Annotated TLB Walk Code (Out Asm)
---- prologue
 0x7fffe1ba1000:  mov    -0xc(%r14),%ebp
 0x7fffe1ba1004:  test   %ebp,%ebp
 0x7fffe1ba1006:  jne    0x7fffe1ba10c9
   ---- 0x40000000
 0x7fffe1ba100c:  xor    %ebp,%ebp
 0x7fffe1ba100e:  mov    %ebp,(%r14)
   ---- 0x40000004
     - movi_i32
 0x7fffe1ba1011:  mov    $0x40000010,%ebp
     - qemu_ld_i32
 0x7fffe1ba1016:  mov    %rbp,%rdi - r0
 0x7fffe1ba1019:  mov    %ebp,%esi - r1

 0x7fffe1ba101f:  and    $0xfffffc03,%esi

     - index into tlb_table[mem_index][0]+target_page
 0x7fffe1ba101b:  shr    $0x5,%rdi
 0x7fffe1ba1025:  and    $0x1fe0,%edi

 0x7fffe1ba102b:  lea    0x2c18(%r14,%rdi,1),%rdi
 0x7fffe1ba1033:  cmp    (%rdi),%esi
 0x7fffe1ba1035:  mov    %ebp,%esi
 0x7fffe1ba1037:  jne    0x7fffe1ba111b
   --- offset to "host address"
 0x7fffe1ba103d:  add    0x10(%rdi),%rsi
   --- actual load



 0x7fffe1ba1041:  mov    (%rsi),%ebp
   --- mov_i32 r1, tmp6
 0x7fffe1ba1043:  mov    %ebp,0x4(%r14)

   ----- slow path function call
 0x7fffe1ba111b:  mov    %r14,%rdi
 0x7fffe1ba111e:  mov    $0x21,%edx
 0x7fffe1ba1123:  lea    -0xe7(%rip),%rcx        # 0x7fffe1ba1043
 0x7fffe1ba112a:  mov    $0x555555653980,%r10    # helper_le_ldul_mmu
 0x7fffe1ba1134:  callq  *%r10
 0x7fffe1ba1137:  mov    %eax,%ebp
 0x7fffe1ba1139:  jmpq   0x7fffe1ba1043



Locking in run loop





SoftMMU Slowpath Reasons
Missing mapping

first access (fill)
crossed target page (refill)

Mapping invalidated
Page not dirty
Page is MMIO


