Using Upstream QEMU
for Computer Architecture
and Software Studies

Christopher Covington
August 19th, 2015

Agenda

Background, definitions
Prior work

Selected use cases
— Instruction count based fast forwarding
- Control flow tracing
- Memory access tracing
— Checkpoint interoperability

Discussion

Background

Most experienced with AArch64

System types

- “Functional” models

- “Timing” models

- Hardware description language simulators
CRIU: Checkpoint/Restore In Userspace

Fast forwarding: dumping a checkpoint on a fast system
and restoring it on a slow system

Prior Work

Thank you QEMU developers!
Computer Architecture

X QSIm http://manifold.gatech.edu/projects/qsim-a-multicore-emulator/
- MARSSx86 http://marss86.org/~marss86/index.php/Home
- QEMU Trace nttp:/iweb.eece.maine.edu/~vweaver/projects/qemu-trace

- VCSIMx86 http://www3.cs.stonybrook.edu/~hkang/software/vcsimx86.html
Software Analysis
— QEMU BBV http://web.eece.maine.edu/~vweaver/projects/gemusim/

— PANDA nttps://github.com/moyix/panda

— S2E nttp://s2e.epfl.ch/

http://manifold.gatech.edu/projects/qsim-a-multicore-emulator/
http://marss86.org/~marss86/index.php/Home
http://web.eece.maine.edu/~vweaver/projects/qemu-trace
http://www3.cs.stonybrook.edu/~hkang/software/vcsimx86.html
http://web.eece.maine.edu/~vweaver/projects/qemusim/
https://github.com/moyix/panda
http://s2e.epfl.ch/

b

L

Fast Forwarding

N

'.-r\-‘-\‘__
iy =
E:

”

Fast Forwarding

N

Fast Forwarding: Assumptions

e Determinism: Starting from the same initial state and
running for the same duration faithfully recreates
subsequent state

e Checkpointing: Checkpoints faithfully recreate initial
state

Fast Forwarding: Using QEMU, Linux, and CRIU

Architecturally executed instructions used as basic unit of measurement.

On QEMU (functional model):
ptrace-wait $pid $(($isize * $inum))
criu dump -j -t $pid

On timing model:
Criu restore

perf stat -t $pid
ptrace-walit $pid $isize

Fast Forwarding: Functionality Required of QEMU

ptrace-wailt uses perf_event_open and the

Instructions event, which on AArch64 uses ARM PMUv3
hardware.

ARM PMUv3 support for counting instructions and
sending interrupts on overflow is missing.

Superior alternatives?

Any parts already implemented in QEMU, such as on
other architectures?

Useful for other purposes?

Fast Forwarding: Sampling to Avoid Redundant Work

sort uniq

SMARTS statistical sampling

http://users.ece.cmu.edu/~jhoe/doku/doku.php?id=smarts_simulation_sampling

SimPoint k-means clustering
https://www.cs.ucsb.edu/~sherwood/pubs/IEEEMicro-phases.pdf

http://users.ece.cmu.edu/~jhoe/doku/doku.php?id=smarts_simulation_sampling
https://www.cs.ucsb.edu/~sherwood/pubs/IEEEMicro-phases.pdf

Control Flow Tracing

Useful for high-level characterization of fixed-work
applications
Can record

- Number, variety, and duration (in instructions)

- Of system calls, library calls, function calls, and loops

Basic Block Vectors (BBVs) used by SimPoint are
essentially histograms of control flow

Control Flow Tracing:
Functionality Required of QEMU

« -d exec option gets most of the way there

* |n addition, need to know

- Length of each block

- If a block is only partially executed, how much of it is
executed/abandoned

- If a block is linked circularly, how many iterations are
executed

Control Flow Tracing:
Functionality Required of QEMU

iIcount has most of this information

Exposing information to target/guest would be nice too,
probably in the form of an emulated Embedded Trace
Macrocell (ETM) device

Superior alternatives?

Any parts already implemented in QEMU, such as on
other architectures?

Useful for other purposes?

Memory Access Tracing

 More application detall

- To drive simulators of memory hierarchy components,
such as caches

- To create self-restoring checkpoints (“Intrinsic
Checkpoints with Binary Modification”)
http://deepblue.lib.umich.edu/handle/2027.42/60726

http://deepblue.lib.umich.edu/handle/2027.42/60726

Memory Access Tracing:
Functionality Required of QEMU

* Need to record

- Read or write operation

— Guest/target virtual address

- Guest/target physical address
- Value being read or written

Memory Access Tracing:
Functionality Required of QEMU

Not sure what related facilities QEMU already has

Exposing information to target/guest would be nice too,
probably in the form of an emulated Embedded Trace
Macrocell (ETM) device

Superior alternatives?

Any parts already implemented in QEMU, such as on
other architectures?

Useful for other purposes?

Checkpoint Interoperability

Speculative, but what if QEMU linux-user mode, CRIU,
and self-restoring checkpoints could interoperate?

Superior alternatives?

Any parts already implemented in QEMU, such as on
other architectures?

Useful for other purposes?

Thank You

Copyright (c) 2015, The Linux Foundation. All rights reserved.

This work is licensed under the terms of the GNU General Public License,
version 2 or later as published by the Free Software Foundation.

This work is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY:; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

Christopher Covington is an employee of the Qualcomm Innovation Center,
Inc. The Qualcomm Innovation Center, Inc. is a member of the Code Aurora
Forum, a Linux Foundation Collaborative Project.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

