
Using Upstream QEMU

for Computer Architecture

and Software Studies

Christopher Covington

August 19th, 2015

Agenda

● Background, definitions
● Prior work
● Selected use cases

– Instruction count based fast forwarding

– Control flow tracing

– Memory access tracing

– Checkpoint interoperability

● Discussion

Background

● Most experienced with AArch64
● System types

– “Functional” models

– “Timing” models

– Hardware description language simulators

● CRIU: Checkpoint/Restore In Userspace
● Fast forwarding: dumping a checkpoint on a fast system

and restoring it on a slow system

Prior Work

● Thank you QEMU developers!
● Computer Architecture

– QSim http://manifold.gatech.edu/projects/qsim-a-multicore-emulator/

– MARSSx86 http://marss86.org/~marss86/index.php/Home

– QEMU Trace http://web.eece.maine.edu/~vweaver/projects/qemu-trace

– VCSIMx86 http://www3.cs.stonybrook.edu/~hkang/software/vcsimx86.html

● Software Analysis
– QEMU BBV http://web.eece.maine.edu/~vweaver/projects/qemusim/

– PANDA https://github.com/moyix/panda

– S2E http://s2e.epfl.ch/

http://manifold.gatech.edu/projects/qsim-a-multicore-emulator/
http://marss86.org/~marss86/index.php/Home
http://web.eece.maine.edu/~vweaver/projects/qemu-trace
http://www3.cs.stonybrook.edu/~hkang/software/vcsimx86.html
http://web.eece.maine.edu/~vweaver/projects/qemusim/
https://github.com/moyix/panda
http://s2e.epfl.ch/

Fast Forwarding

Fast Forwarding

Fast Forwarding: Assumptions

● Determinism: Starting from the same initial state and
running for the same duration faithfully recreates
subsequent state

● Checkpointing: Checkpoints faithfully recreate initial
state

Fast Forwarding: Using QEMU, Linux, and CRIU

Architecturally executed instructions used as basic unit of measurement.

On QEMU (functional model):

ptrace-wait $pid $(($isize * $inum))

criu dump -j -t $pid

On timing model:

criu restore

perf stat -t $pid

ptrace-wait $pid $isize

Fast Forwarding: Functionality Required of QEMU

● ptrace-wait uses perf_event_open and the
instructions event, which on AArch64 uses ARM PMUv3
hardware.

● ARM PMUv3 support for counting instructions and
sending interrupts on overflow is missing.

● Superior alternatives?
● Any parts already implemented in QEMU, such as on

other architectures?
● Useful for other purposes?

Fast Forwarding: Sampling to Avoid Redundant Work

SMARTS statistical sampling
http://users.ece.cmu.edu/~jhoe/doku/doku.php?id=smarts_simulation_sampling

SimPoint k-means clustering
https://www.cs.ucsb.edu/~sherwood/pubs/IEEEMicro-phases.pdf

sort uniq

http://users.ece.cmu.edu/~jhoe/doku/doku.php?id=smarts_simulation_sampling
https://www.cs.ucsb.edu/~sherwood/pubs/IEEEMicro-phases.pdf

Control Flow Tracing

● Useful for high-level characterization of fixed-work
applications

● Can record
– Number, variety, and duration (in instructions)

– Of system calls, library calls, function calls, and loops

● Basic Block Vectors (BBVs) used by SimPoint are
essentially histograms of control flow

Control Flow Tracing:
Functionality Required of QEMU

● -d exec option gets most of the way there

● In addition, need to know
– Length of each block
– If a block is only partially executed, how much of it is

executed/abandoned

– If a block is linked circularly, how many iterations are
executed

Control Flow Tracing:
Functionality Required of QEMU

● icount has most of this information
● Exposing information to target/guest would be nice too,

probably in the form of an emulated Embedded Trace
Macrocell (ETM) device

● Superior alternatives?
● Any parts already implemented in QEMU, such as on

other architectures?
● Useful for other purposes?

Memory Access Tracing

● More application detail
– To drive simulators of memory hierarchy components,

such as caches

– To create self-restoring checkpoints (“Intrinsic
Checkpoints with Binary Modification”)
http://deepblue.lib.umich.edu/handle/2027.42/60726

http://deepblue.lib.umich.edu/handle/2027.42/60726

Memory Access Tracing:
Functionality Required of QEMU

● Need to record
– Read or write operation

– Guest/target virtual address

– Guest/target physical address

– Value being read or written

Memory Access Tracing:
Functionality Required of QEMU

● Not sure what related facilities QEMU already has
● Exposing information to target/guest would be nice too,

probably in the form of an emulated Embedded Trace
Macrocell (ETM) device

● Superior alternatives?
● Any parts already implemented in QEMU, such as on

other architectures?
● Useful for other purposes?

Checkpoint Interoperability

● Speculative, but what if QEMU linux-user mode, CRIU,
and self-restoring checkpoints could interoperate?

● Superior alternatives?
● Any parts already implemented in QEMU, such as on

other architectures?
● Useful for other purposes?

Thank You

Copyright (c) 2015, The Linux Foundation. All rights reserved.

This work is licensed under the terms of the GNU General Public License,
version 2 or later as published by the Free Software Foundation.

This work is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public

License for more details.

Christopher Covington is an employee of the Qualcomm Innovation Center,
Inc. The Qualcomm Innovation Center, Inc. is a member of the Code Aurora

Forum, a Linux Foundation Collaborative Project.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

