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Motivation (1)

“People say that you should not micro-optimize. But if what you love is 
micro-optimization... that's what you should do.” - Linus Torvalds



  

Motivation (2)
● Sample uperf TCP RR 1:1
● 1 byte tcp ping pong
● Let's see what happens when you add ndelay() after 

each guest exit
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What did I do?

● Measuring how long it takes from guest->host->guest (guest exit 
handling exit and return to guest)
– Initially with kernel module with timing and retries on s390

● Initial round trip time was 760ns (*)
– Was surprised how far we exceed the HW overhead of entry/exit handling

– Quickly identified several things down to 500ns

– → Measuring and analysing can bring benefits very quickly for new architectures

● A lot more things after that
– Fight against old code

– Fight against new code

● Now at ~300ns (*) on my test system
– Still much more than pure HW overhead

(*) Disclaimer:  all numbers based on my as-is kernel config and my test systems (uncontrolled environment)



  

Measuring 1/3

● Kvm-unit-tests
– Available for most platforms

– Gives times for typical exits

– How long – not why (in cycles)
$ ./x86/run x86/vmexit.flat 
[…]
cpuid 1552
vmcall 1448
mov_from_cr8 1
mov_to_cr8 15
inl_from_pmtimer 7220
inl_from_qemu 7002
[…]
● Kernel module for s390 as outlined

Done by HW

Done by kernel

Done by HW

Done in QEMU



  

Measuring 2/3

● So let's have a look at the why
– Use ftrace!

– Resolution for function tracer is microseconds
 qemu­system­s39­4797  [000] ....   195.732618: kvm_s390_deliver_pending_inte...

– Resolution for function graph is nanoseconds 
   0)   0.034 us    |          mutex_lock_killable();

– Overhead > subject of measurement
● Simple hypercall 300 ns → 1800 ns for function tracer
● Simple hypercall 300 ns → 4800 ns for function_graph
● Software uncertainty principle?

– Still useful for finding interesting spots

– Some functions (.s files) not prepared for ftrace :-/



  

Measuring 3/3

● Use perf top/annotate
– staring at samples in disassembly

– Looking closer at hot samples

● Hand written “hacks”
● Disable “optional” code and retest



  

History: early exits
● Request handling has many test_bits, clear_bits and memory barriers
● Requests are not the fast path, early exit if there are not requests

– saves about 10ns for the common case on s390

 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
 {
[…]
+       if (!vcpu­>requests)
+               return 0;
[…]
        if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
[…]

● There was a followup idea from Paolo to pull this if into kvm_check_request such that gcc 
can optimize

– I forgot about that

– X86 and power already have a similar “if(vcpu->requests)”

– Mips has only KVM_REQ_UNHALT

– Arm sets KVM_REQ_VCPU_EXIT (but never checks?)



  

History: irqsave/restore

● irq_save/restore vs. irq_disable/enable
– save/restore is about 5-8x slower than 

disable/enable on s390/x86

● How often when running KVM?
– Around guest_enter_irqoff

– rcu_note_context_switch might do it

– Inside exit handlers

– In scheduler code

● KVM now does disable/enable



  

History: more s390 code

● S390 debug feature: pull condition check into 
header file

● S390 interrupt handling: do early exits
● Built-in vs. module
● Optimize irq_restore (ssm vs. stosm)



  

Today

● Upstream s390 kernel, default config
● simple hypercall: ~300ns
● Lets start to remove code

– Remove vtime_account_system: 255ns
● About 50% arch code / 50% core code

– + get rid of irq_disable_enable around guest_enter/exit: 246ns
– + do not care about srcu locking 243ns
– +get rid of tracing calls: 241ns
– +shortcut in C (if special case just rerun the sie function): 197ns
– +shortcut in assembler: 175 ns

● Still larger than pure HW time
– possibly some misses/restarts in pipeline, caches, TLB and branch prediction
– Still some code in hypervisor that needs to run

HW+base
assembler

low level
handling

C loop

--
irq

time
accounting



  

QEMU

● Additional overhead of ~3000 cycles on x86 broadwell (~6000 on my ivy bridge)
– Some things are known

● Base overhead as seen before
● signal mask restore
● system call return
● Glibc ioctl routine
● KVM low level ioctl handling
● KVM main loop
● Glibc ioctl routine
● system call enter
● signal mask set

– Some things can be hw related due to context change
● Branch prediction
● TLB
● Caches

– Some overhead due to horribly expensive things in QEMU



  

QEMU

● Can we stay in the kernel for most exits?



  

KVM exits

Guest context

Host kernel context (kvm module)

QEMU (cpu thread)
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eventfd
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eventfd

● Using eventfd: 1400ns->400ns for the guest 
exit of the virtio kick

● Exit time seems to be constant, no matter how 
many devices (eventfd file descriptors) are 
being used → write to eventfd

● Performance (fio) also seems “flat”, as long as 
every disks has its own iothread



  

vcpu_load vcpu_put

● With eventfd, most exits become lightweight 
exits
– Can we avoid some things for lightweight exits?

– The kernel does not use floating point

– vcpu_load/vcpu_put
● Floating point registers
● Access registers
● ...

– Preempt notifier will ensure data integrity



  

QEMU

● You said “Some overhead due to horribly 
expensive things in QEMU” on slide 12
– Any examples?



  

cpu_synchronize state

● cpu_synchronize_state when you need to read/write any CPU register state
– call kvm_arch_get_registers 
– Schedules kvm_arch_put_registers
– Two ioctl per register class (GET and SET)

● KVM_GET_REGS
● KVM_GET_XSAVE
● KVM_GET_XCRS
● KVM_GET_SREGS
● KVM_GET_MSRS
● KVM_GET_MP_STATE
● KVM_GET_LAPIC
● KVM_GET_PIT2
● KVM_SET_REGS
● KVM_SET_XSAVE
● KVM_SET_XCRS
● KVM_SET_SREGS
● KVM_SET_MSRS
● KVM_SET_MSRS
● KVM_SET_PIT2

­­­ a/kvm­all.c
+++ b/kvm­all.c
@@ ­1833,4 +1833,5 @@ int kvm_cpu_exec(CPUState *cpu)
 
         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
+        cpu_synchronize_state(cpu);
[…]

inl_from_qemu: 9183

inl_from_qemu: 59660



  

Sync regs

● On s390 we often need one or the other 
register
– Only one exit type (we would need one for each 

instructions)

– We do call cpu_synchronize_state OFTEN

– Why not use kvm_run as place for registers?



  

Is this good enough?

● With all optimizations, arch_put/get_registers still 
visible in samples

        for (i = 0; i < 32; i++) {
            cs­>kvm_run­>s.regs.vrs[i][0] = env­>vregs[i][0].ll;
            cs­>kvm_run­>s.regs.vrs[i][1] = env­>vregs[i][1].ll;
        }

– Due to aliasing rules and other things, gcc creates a loop 
with loads/stores instead of one big memcpy

– Some cache effect as we are at the end of a context

● Long term solution could be to use access functions 
for registers
– No mirroring necessary



  

Object model

­­­ a/kvm­all.c
+++ b/kvm­all.c
@@ ­1833,4 +1833,5 @@ int kvm_cpu_exec(CPUState *cpu)
 
         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
+        object_resolve_path_type("", TYPE_ACCEL, NULL);
[…]

● Resolving an object is extremely expensive

inl_from_qemu: 9183

inl_from_qemu: 119780



  

Big qemu lock

● Until QEMU 2.4, all KVM exits were handled 
serialized

    qemu_mutex_unlock_iothread();
    run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
    qemu_mutex_lock_iothread()
● Pushdown efforts started in 2.4
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Future improvements

● Avoid exits
– Use HW features

– suggest HW features

– Improve interfaces (e.g. virtio)

● On x86/s390 kernel offers only small potential
– Request handling optimization in common code

– Signal mask handling

● QEMU
– Identify additional BQL pushdown areas

– Understand object model cpu usage

– Avoid/Optimize synchronize_state

– Extend eventfd to other devices



  

Fun facts

● Plugging in power cable in a Thinkpad W530 
laptop improves exit times significantly even if 
the clock rate is the same

● Found 2 bugs in the s390 code while 
preparing these slides



Thank you!
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