
<atomic.h> weapons

Paolo Bonzini
Red Hat, Inc.
KVM Forum 2016

Paolo Bonzini – KVM Forum 2016

The real things

● Herb Sutter’s talks
● atomic<> Weapons: The C++ Memory Model and

Modern Hardware

● Lock-Free Programming (or, Juggling Razor
Blades)

● The C11 and C++11 standards
● N2429: Concurrency memory model

● N2480: A Less Formal Explanation of the Proposed
C++ Concurrency Memory Model

Paolo Bonzini – KVM Forum 2016

Outline

● Who ordered atomics?

● Compilers and the need for a memory model

● qemu/atomic.h: portable atomics in QEMU

● Future work

Paolo Bonzini – KVM Forum 2016

Outline

● Who ordered atomics?

● Compilers and the need for a memory model

● qemu/atomic.h: portable atomics in QEMU

● Future work

Paolo Bonzini – KVM Forum 2016

Why atomics?

● Coarse locks are simple, but scale badly

● Finer-grained locks introduce problems too
● Not easily composable (“leaf” locks are fine,

nesting can result in deadlocks)

● Taking a lock many times is slow

● Like extremely fine-grained locks, but faster

Paolo Bonzini – KVM Forum 2016

What do atomics provide?

● Ordering of reads and writes

● Atomic compare-and-swap, like this:
atomic_cmpxchg(
 T *p, T expected, T desired)
{
 old = *p;
 if (*p == expected) *p = desired;
 return old;
}

● Everything else can be built on top of these

Paolo Bonzini – KVM Forum 2016

When to use atomics?

● When threads communicate at well-defined
points
● Example: ring buffers

● When consistency requirements are minimal
● Example: accumulating statistics

● When complexity is easily abstracted
● Example: synchronization primitives, data structures

● For the fast path only
● Example: RCU, seqlock, pthread_once

Paolo Bonzini – KVM Forum 2016

Outline

● Who ordered atomics?

● Compilers and the need for a memory model

● qemu/atomic.h: portable atomics in QEMU

● Future work

Paolo Bonzini – KVM Forum 2016

int i;
char *a;
a[i+4] = 1;

movb $1, 4(%rsi,%rdi)

int n, *a;
for (int i = 0; i <= n; i++)
 a[i] = 0;

int n, *a;
for (int *end = &a[n]; a <= end;)
 *a++ = 0;

int **a;
for (int i = 0; i < M; i++)
 for (int j = 0; j < N; j++)
 a[i][j] = 42;

int **a;
for (int i = 0; i < M; i++)
 for (int *row = a[i], j = 0; j < N; j++)
 row[j] = 42;

Compiler writers are your friends

Paolo Bonzini – KVM Forum 2016

Compiler writers are your friends
(but they need some help too)

int i;
char *a;
a[i+4] = 1;

movb $1, 4(%rsi,%rdi)

int n, *a;
for (int i = 0; i <= n; i++)
 a[i] = 0;

int n, *a;
for (int *end = &a[n]; a <= end;)
 *a++ = 0;

int **a;
for (int i = 0; i < M; i++)
 for (int j = 0; j < N; j++)
 a[i][j] = 42;

int **a;
for (int i = 0; i < M; i++)
 for (int *row = a[i], j = 0; j < N; j++)
 row[j] = 42;

assumes no
overflow in i+4!

infinite loop
if n == INT_MAX?

what if a[i][j]
overwrites a[i]?

Paolo Bonzini – KVM Forum 2016

The hard truth about undefined behavior

● You don’t want the compiler to execute the
program you wrote

● Most undefined behavior is obvious

● Some undefined behavior makes sense, but is
hard to reason about

● Some undefined behavior seems to make no
sense, but really should be left undefined

Paolo Bonzini – KVM Forum 2016

Sequential consistency (Lamport, 1979)

● The result of any execution is the same as if
reads and writes occurred in some total order

● Operations from each individual processor are
ordered the same as they appear in the
program

static int a;
int x = ++a;
f();
return x;

static int a;

f();
return ++a;

Paolo Bonzini – KVM Forum 2016

Sequential consistency (Lamport, 1979)

● The result of any execution is the same as if
reads and writes occurred in some total order

● Operations from each individual processor are
ordered the same as they appear in the
program

long long x = 0;

// thread 1
x = -1;

// thread 2
printf(“%lld”, x);

Paolo Bonzini – KVM Forum 2016

Sequential consistency (Lamport, 1979)

● The result of any execution is the same as if
reads and writes occurred in some total order

● Operations from each individual processor are
ordered the same as they appear in the
program

Paolo Bonzini – KVM Forum 2016

The C/C++ approach

● You also don’t want the processor to execute
the program that you wrote
● Processor “optimizations” can be described by

rearranging loads and stores in the source code

● Can the same tools let you reason on both
compiler- and processor-level transformations?

● Union, pointers, casts: with great power comes
great responsibility

Paolo Bonzini – KVM Forum 2016

The C/C++ approach

● Programs must be race-free
● The standard precisely defines data races

● The semantics of data races are left undefined

● If the program is “compiler-correct”, it’s also
“processor-correct”

● If the program is correct, its executions are all
sequentially consistent
● … unless you turn on the guru switch

Paolo Bonzini – KVM Forum 2016

Happens-before (Lamport, 1978)

● Captures causal dependencies between
events

● For any two events e1 and e2, only one is true:
● e1 → e2 (e1 happens before e2)

● e2 → e1 (e2 happens before e1)

● e1 || e2 (e1 is concurrent with e2)

● Data race: Concurrent accesses to the same
memory location, at least one a write, at least
one non-atomic

Paolo Bonzini – KVM Forum 2016

More precisely...

● If a thread’s “load-acquire” sees a
“store-release” from another thread, the
store synchronizes with the load
▶ The store then happens before the load

● Within a single thread, program order provides
the happens-before relation

● Happens-before is transitive
▶ Everything before the store-release happens

before everything after the load-acquire

Paolo Bonzini – KVM Forum 2016

Example: data-race free, correct

foo->a = 1;
atomic_store_release(&x, foo);

bar = atomic_load_acquire(&x);
return foo->a;

happens-before

happens-before

happens-before

● No concurrent accesses

● No data race!

Paolo Bonzini – KVM Forum 2016

Example: data-race, undefined behavior (I)

foo->a = 1;
x = foo;

bar = x;
return foo->a;

happens-before

happens-before

concurrent

● Concurrent non-atomic accesses, one a write

● Data race → undefined behavior!

Paolo Bonzini – KVM Forum 2016

Example: data-race, undefined behavior (II)

foo->a = 1;
atomic_store_relaxed(&x, foo);

bar = atomic_load_relaxed(&x);
return foo->a;

happens-before

happens-before

concurrent

● Concurrent non-atomic accesses, one a write

● Data race → undefined behavior!

● Concurrent atomic accesses, one a write

● No data race!

Paolo Bonzini – KVM Forum 2016

Example: relaxed, data-race free

atomic_inc(&bs->nr_reads);

stats->reads = atomic_read(&bs->nr_reads);

● Concurrent atomic accesses, one a write

● No data race! But not sequentially consistent

concurrent

Paolo Bonzini – KVM Forum 2016

Acquire/release as optimization barriers

foo->a = 1;
atomic_store_release(&x, foo);

bar = atomic_load_acquire(&x);
return foo->a;

happens-before

happens-before

happens-before

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

Paolo Bonzini – KVM Forum 2016

Acquire and release operations

● Acquire:
● pthread_mutex_lock

● pthread_join

● pthread_once

● pthread_cond_wait

● Release:
● pthread_mutex_unlock

● pthread_create

● pthread_once (first time)

● pthread_cond_signal

● pthread_cond_broadcast

● pthread_cond_wait

Paolo Bonzini – KVM Forum 2016

Why atomics work

● Atomics let threads access mutable shared
data without causing data races

● Atomics define happens-before across threads

● Programs that correctly use locks to prevent all
data races behave as sequentially consistent

● Same for programs that do not use so-called
“relaxed” atomics

Paolo Bonzini – KVM Forum 2016

Outline

● Who ordered atomics?

● Compilers and the need for a memory model

● qemu/atomic.h: portable atomics in QEMU

● Future work

Paolo Bonzini – KVM Forum 2016

Problems with C11 atomics

● Only supported by very recent compilers
▶ Limit to what older compilers can “emulate”

● Very large API, few people can understand it
▶ Start small, later add what turns out to be useful

● Some rules conflict with older usage
foo->bar = 1;
smp_wmb();
x = foo;

foo->bar = 1;
atomic_thread_fence(memory_order_release);
atomic_store(&x, foo, memory_order_relaxed);

foo->bar = 1;
atomic_store(&x, foo, memory_order_release);

Paolo Bonzini – KVM Forum 2016

Choosing the API

● Yes:
● Everything seq_cst

(load, store, RMW)

● Relaxed load/store

● RCU load/store

● Legacy:
● Compiler barrier

● Linux-style memory
barriers

● No:
● RMW operations

other than seq_cst

● Maybe:
● C11-style memory

barriers

● Load-acquire

● Store-release

Paolo Bonzini – KVM Forum 2016

qemu/atomic.h API

● atomic_mb_read
atomic_mb_set

● atomic_rcu_read
atomic_rcu_set

● atomic_read
atomic_set

● smp_mb
smp_rmb (load-load)
smp_wmb (store-store)

● atomic_fetch_add
atomic_fetch_sub
atomic_fetch_inc
...

● atomic_add
atomic_sub
atomic_inc
...

● atomic_xchg

● atomic_cmpxchg

Paolo Bonzini – KVM Forum 2016

Problems with portable atomics

● Less safe than C11 stdatomic.h

● Sometimes difficult to bridge C11 and
“compatibility” semantics

_Atomic int x;
x = 2;
x += y;

int x;
atomic_mb_set(&x, 2);
atomic_add(&x, y);

Paolo Bonzini – KVM Forum 2016

Compatibility with older compilers

● To block optimization:
● volatile

● asm(“”) (aka barrier();)

● __sync_* builtins

● If all else fails (or is too slow), asm

No synchronization
for multiple threads!

Paolo Bonzini – KVM Forum 2016

Problems with pre-C11 atomics

“[C11 atomic] accesses are guaranteed to be
atomic, while volatile accesses aren't.

In the volatile case we just cross our fingers
hoping that the compiler will generate atomic

accesses.” (docs/atomics.txt)

Paolo Bonzini – KVM Forum 2016

Problems with pre-C11 atomics

● Only heavyweight memory barriers
(__sync_synchronize)

● No seq-cst loads and stores

● Use asm for these

Paolo Bonzini – KVM Forum 2016

First rule of qemu/atomic.h

● Keep all pre-C11 hacks in there

● If really, really necessary use C11 atomics
outside qemu/atomic.h

● NEVER use asm for atomics outside
qemu/atomic.h

● Corollary: relaxed-atomic optimizations should
only target C11 atomics

Paolo Bonzini – KVM Forum 2016

qemu/atomic.h API “safe” subsets

● atomic_mb_read
atomic_mb_set

● atomic_rcu_read
atomic_rcu_set

● atomic_read
atomic_set

● smp_mb
smp_rmb
smp_wmb

● atomic_fetch_add
atomic_fetch_sub
atomic_fetch_inc
...

● atomic_add
atomic_sub
atomic_inc
...

● atomic_xchg

● atomic_cmpxchg

Paolo Bonzini – KVM Forum 2016

qemu/atomic.h API “less safe” subset

● atomic_mb_read
atomic_mb_set

● atomic_rcu_read
atomic_rcu_set

● atomic_read
atomic_set

● smp_mb
smp_rmb
smp_wmb

● atomic_fetch_add
atomic_fetch_sub
atomic_fetch_inc
...

● atomic_add
atomic_sub
atomic_inc
...

● atomic_xchg

● atomic_cmpxchg

Paolo Bonzini – KVM Forum 2016

Outline

● Who ordered atomics?

● Compilers and the need for a memory model

● qemu/atomic.h: portable atomics in QEMU

● Future work

Paolo Bonzini – KVM Forum 2016

Choosing the API

● Yes:
● Everything seq_cst

(load, store, RMW)

● Relaxed load/store

● RCU load/store

● Legacy:
● Linux-style memory

barriers

● No:
● RMW operations

other than seq_cst

● Maybe:
● C11-style memory

barriers

● Load-acquire

● Store-release

Paolo Bonzini – KVM Forum 2016

Future work

● Modernize old code using memory barriers
● Use atomic_read/atomic_set

● Possibly introduce atomic_load_acquire and
atomic_store_release

foo->bar = 1;
smp_wmb();
x = foo;

foo->bar = 1;
smp_wmb();
atomic_set(&x, foo);

foo->bar = 1;
atomic_store_release(&x, foo);

See commit 3bbf572
("atomics: add explicit
compiler fence in __atomic
memory barriers")

Paolo Bonzini – KVM Forum 2016

Future work

● Modernize old code using memory barriers
● Use atomic_read/atomic_set

● Possibly introduce atomic_load_acquire and
atomic_store_release

● Seqlock-protected fields should use
atomic_read/atomic_set too

Paolo Bonzini – KVM Forum 2016

Future work

● Change Linux-style barriers to C11 barriers
● Linux: smp_mb(), smp_rmb(), smp_wmb()

● C11: seq-cst, acquire, release

Load-load Load-store

Store-load Store-store

ACQUIRE-BARRIER

RELEASE-BARRIER

“How to achieve [a load-store barrier] varies depending
on the machine, but in practice smp_rmb()+smp_wmb()
should have the desired effect.” (docs/atomics.txt)

Paolo Bonzini – KVM Forum 2016

Future work

● Yes:
● Everything seq_cst

(load, store, RMW)

● Relaxed load/store

● C11-style memory
barriers

● Load-acquire

● Store-release

● Load-consume (RCU)

● No:
● RMW operations

other than seq_cst

● Compiler barrier

● Linux-style memory
barriers

Paolo Bonzini – KVM Forum 2016

“Atomics are like a chainsaw. Everyone can
learn to use one, but don’t let yourself get

too comfortable with it.”
- Herb Sutter

Paolo Bonzini – KVM Forum 2016

Bonus material

Paolo Bonzini – KVM Forum 2016

Load-acquire/store-release vs.
Acquire-barrier/release-barrier

Load-load Load-store

Store-load Store-store

LOAD-ACQUIRE?

STORE-RELEASE?

store x = 1
store release y = 1
store z = 1

store z = 1
store x = 1
store release y = 1

store z = 1
store x = 1
store-store barrier
store y = 1

✓

✗
store x = 1
store-store barrier
store y = 1
store z = 1

ACQUIRE-BARRIER

RELEASE-BARRIER

Paolo Bonzini – KVM Forum 2016

Compiling atomics

load-consume load-acquire store-release load-seqcst store-seqcst

X86 mov mov mov mov xchg

IA64 ld.acq ld.acq st.rel ld.acq st.rel
mf

ARMv7 ldr ldr
dmb

dmb
ldr

ldr
dmb

dmb
ldr
dmb

PPC ld ld
cmp; bc; isync

lwsync
st

sync
ld
cmp; bc; isync

sync
st

AArch64 ldr ldar stlr ldar stlr

Paolo Bonzini – KVM Forum 2016

IRIW: independent reads of independent writes

x = 1;

r1 = x;
r2 = y;

y = 1;

r3 = y;
r4 = x;

r1 = 1, r2 = 0, r3 = 1, r4 = 0?

Paolo Bonzini – KVM Forum 2016

IRIW and single-copy atomicity

li r5, 1
stw r5, 0(x)

li r5, 1
stw r5, 0(y)

r1 = 1, r2 = 0, r3 = 1, r4 = 0?

lwz r1,0(x)
lwsync
lwz r2, 0(y)

lwz r3,0(y)
lwsync
lwz r4, 0(x)

✓ ✓ ✓ ✓

Paolo Bonzini – KVM Forum 2016

IRIW and multiple-copy atomicity

li r5, 1
stw r5, 0(x)

li r5, 1
stw r5, 0(y)

r1 = 1, r2 = 0, r3 = 1, r4 = 0?

lwz r1,0(x)
sync
lwz r2, 0(y)

lwz r3,0(y)
sync
lwz r4, 0(x)

✓ ✓r2 = 1 r4 = 1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

