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The real things

● Herb Sutter’s talks
● atomic<> Weapons: The C++ Memory Model and 

Modern Hardware

● Lock-Free Programming (or, Juggling Razor 
Blades)

● The C11 and C++11 standards
● N2429: Concurrency memory model

● N2480: A Less Formal Explanation of the Proposed 
C++ Concurrency Memory Model
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Outline

● Who ordered atomics?

● Compilers and the need for a memory model

● qemu/atomic.h: portable atomics in QEMU

● Future work
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Why atomics?

● Coarse locks are simple, but scale badly

● Finer-grained locks introduce problems too
● Not easily composable (“leaf” locks are fine, 

nesting can result in deadlocks)

● Taking a lock many times is slow

● Like extremely fine-grained locks, but faster
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What do atomics provide?

● Ordering of reads and writes

● Atomic compare-and-swap, like this:
atomic_cmpxchg(
    T *p, T expected, T desired)
{
  old = *p;
  if (*p == expected) *p = desired;
  return old;
}

● Everything else can be built on top of these
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When to use atomics?

● When threads communicate at well-defined 
points
● Example: ring buffers

● When consistency requirements are minimal
● Example: accumulating statistics

● When complexity is easily abstracted
● Example: synchronization primitives, data structures

● For the fast path only
● Example: RCU, seqlock, pthread_once
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int i;
char *a;
a[i+4] = 1;

movb $1, 4(%rsi,%rdi)

int n, *a;
for (int i = 0; i <= n; i++)
  a[i] = 0;

int n, *a;
for (int *end = &a[n]; a <= end; )
  *a++ = 0;

int **a;
for (int i = 0; i < M; i++)
  for (int j = 0; j < N; j++)
    a[i][j] = 42;

int **a;
for (int i = 0; i < M; i++)
  for (int *row = a[i], j = 0; j < N; j++)
    row[j] = 42;

Compiler writers are your friends
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Compiler writers are your friends
(but they need some help too)

int i;
char *a;
a[i+4] = 1;

movb $1, 4(%rsi,%rdi)

int n, *a;
for (int i = 0; i <= n; i++)
  a[i] = 0;

int n, *a;
for (int *end = &a[n]; a <= end; )
  *a++ = 0;

int **a;
for (int i = 0; i < M; i++)
  for (int j = 0; j < N; j++)
    a[i][j] = 42;

int **a;
for (int i = 0; i < M; i++)
  for (int *row = a[i], j = 0; j < N; j++)
    row[j] = 42;

assumes no
overflow in i+4!

infinite loop
if n == INT_MAX?

what if a[i][j]
overwrites a[i]?
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The hard truth about undefined behavior

● You don’t want the compiler to execute the 
program you wrote

● Most undefined behavior is obvious

● Some undefined behavior makes sense, but is 
hard to reason about

● Some undefined behavior seems to make no 
sense, but really should be left undefined



Paolo Bonzini – KVM Forum 2016 

Sequential consistency (Lamport, 1979)

● The result of any execution is the same as if 
reads and writes occurred in some total order

● Operations from each individual processor are 
ordered the same as they appear in the 
program

static int a;
int x = ++a;
f();
return x;

static int a;

f();
return ++a;
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Sequential consistency (Lamport, 1979)

● The result of any execution is the same as if 
reads and writes occurred in some total order

● Operations from each individual processor are 
ordered the same as they appear in the 
program

long long x = 0;

// thread 1
x = -1;

// thread 2
printf(“%lld”, x);
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Sequential consistency (Lamport, 1979)

● The result of any execution is the same as if 
reads and writes occurred in some total order

● Operations from each individual processor are 
ordered the same as they appear in the 
program
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The C/C++ approach

● You also don’t want the processor to execute 
the program that you wrote
● Processor “optimizations” can be described by 

rearranging loads and stores in the source code

● Can the same tools let you reason on both 
compiler- and processor-level transformations?

● Union, pointers, casts: with great power comes 
great responsibility
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The C/C++ approach

● Programs must be race-free
● The standard precisely defines data races

● The semantics of data races are left undefined

● If the program is “compiler-correct”, it’s also 
“processor-correct”

● If the program is correct, its executions are all 
sequentially consistent
● … unless you turn on the guru switch



Paolo Bonzini – KVM Forum 2016 

Happens-before (Lamport, 1978)

● Captures causal dependencies between 
events

● For any two events e1 and e2, only one is true:
● e1 → e2 (e1 happens before e2)

● e2 → e1 (e2 happens before e1)

● e1 || e2 (e1 is concurrent with e2)

● Data race: Concurrent accesses to the same 
memory location, at least one a write, at least 
one non-atomic
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More precisely...

● If a thread’s “load-acquire” sees a
“store-release” from another thread, the
store synchronizes with the load
▶ The store then happens before the load

● Within a single thread, program order provides 
the happens-before relation

● Happens-before is transitive
▶ Everything before the store-release happens 

before everything after the load-acquire
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Example: data-race free, correct

foo->a = 1;
atomic_store_release(&x, foo);

bar = atomic_load_acquire(&x);
return foo->a;

happens-before

happens-before

happens-before

● No concurrent accesses

● No data race!
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Example: data-race, undefined behavior (I)

foo->a = 1;
x = foo;

bar = x;
return foo->a;

happens-before

happens-before

concurrent

● Concurrent non-atomic accesses, one a write

● Data race → undefined behavior!
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Example: data-race, undefined behavior (II)

foo->a = 1;
atomic_store_relaxed(&x, foo);

bar = atomic_load_relaxed(&x);
return foo->a;

happens-before

happens-before

concurrent

● Concurrent non-atomic accesses, one a write

● Data race → undefined behavior!

● Concurrent atomic accesses, one a write

● No data race!
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Example: relaxed, data-race free

atomic_inc(&bs->nr_reads);

stats->reads = atomic_read(&bs->nr_reads);

● Concurrent atomic accesses, one a write

● No data race! But not sequentially consistent

concurrent
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Acquire/release as optimization barriers

foo->a = 1;
atomic_store_release(&x, foo);

bar = atomic_load_acquire(&x);
return foo->a;

happens-before

happens-before

happens-before

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
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Acquire and release operations

● Acquire:
● pthread_mutex_lock

● pthread_join

● pthread_once

● pthread_cond_wait

● Release:
● pthread_mutex_unlock

● pthread_create

● pthread_once (first time)

● pthread_cond_signal

● pthread_cond_broadcast

● pthread_cond_wait
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Why atomics work

● Atomics let threads access mutable shared 
data without causing data races

● Atomics define happens-before across threads

● Programs that correctly use locks to prevent all 
data races behave as sequentially consistent

● Same for programs that do not use so-called 
“relaxed” atomics
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Outline

● Who ordered atomics?

● Compilers and the need for a memory model

● qemu/atomic.h: portable atomics in QEMU

● Future work
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Problems with C11 atomics

● Only supported by very recent compilers
▶ Limit to what older compilers can “emulate”

● Very large API, few people can understand it
▶ Start small, later add what turns out to be useful

● Some rules conflict with older usage
foo->bar = 1;
smp_wmb();
x = foo;

foo->bar = 1;
atomic_thread_fence(memory_order_release);
atomic_store(&x, foo, memory_order_relaxed);

foo->bar = 1;
atomic_store(&x, foo, memory_order_release);
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Choosing the API

● Yes:
● Everything seq_cst 

(load, store, RMW)

● Relaxed load/store

● RCU load/store

● Legacy:
● Compiler barrier

● Linux-style memory 
barriers

● No:
● RMW operations 

other than seq_cst

● Maybe:
● C11-style memory 

barriers

● Load-acquire

● Store-release
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qemu/atomic.h API

● atomic_mb_read
atomic_mb_set

● atomic_rcu_read
atomic_rcu_set

● atomic_read
atomic_set

● smp_mb
smp_rmb (load-load)
smp_wmb (store-store)

● atomic_fetch_add
atomic_fetch_sub
atomic_fetch_inc
...

● atomic_add
atomic_sub
atomic_inc
...

● atomic_xchg

● atomic_cmpxchg



Paolo Bonzini – KVM Forum 2016 

Problems with portable atomics

● Less safe than C11 stdatomic.h

● Sometimes difficult to bridge C11 and 
“compatibility” semantics

_Atomic int x;
x = 2;
x += y;

int x;
atomic_mb_set(&x, 2);
atomic_add(&x, y);
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Compatibility with older compilers

● To block optimization:
● volatile

● asm(“”) (aka barrier();)

● __sync_* builtins

● If all else fails (or is too slow), asm

No synchronization
for multiple threads!
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Problems with pre-C11 atomics

“[C11 atomic] accesses are guaranteed to be 
atomic, while volatile accesses aren't.

In the volatile case we just cross our fingers 
hoping that the compiler will generate atomic 

accesses.” (docs/atomics.txt)
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Problems with pre-C11 atomics

● Only heavyweight memory barriers 
(__sync_synchronize)

● No seq-cst loads and stores

● Use asm for these
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First rule of qemu/atomic.h

● Keep all pre-C11 hacks in there

● If really, really necessary use C11 atomics 
outside qemu/atomic.h

● NEVER use asm for atomics outside 
qemu/atomic.h

● Corollary: relaxed-atomic optimizations should 
only target C11 atomics
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qemu/atomic.h API “safe” subsets

● atomic_mb_read
atomic_mb_set

● atomic_rcu_read
atomic_rcu_set

● atomic_read
atomic_set

● smp_mb
smp_rmb
smp_wmb

● atomic_fetch_add
atomic_fetch_sub
atomic_fetch_inc
...

● atomic_add
atomic_sub
atomic_inc
...

● atomic_xchg

● atomic_cmpxchg
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qemu/atomic.h API “less safe” subset

● atomic_mb_read
atomic_mb_set

● atomic_rcu_read
atomic_rcu_set

● atomic_read
atomic_set

● smp_mb
smp_rmb
smp_wmb

● atomic_fetch_add
atomic_fetch_sub
atomic_fetch_inc
...

● atomic_add
atomic_sub
atomic_inc
...

● atomic_xchg

● atomic_cmpxchg



Paolo Bonzini – KVM Forum 2016 

Outline
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Choosing the API

● Yes:
● Everything seq_cst 

(load, store, RMW)

● Relaxed load/store

● RCU load/store

● Legacy:
● Linux-style memory 

barriers

● No:
● RMW operations 

other than seq_cst

● Maybe:
● C11-style memory 

barriers

● Load-acquire

● Store-release
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Future work

● Modernize old code using memory barriers
● Use atomic_read/atomic_set

● Possibly introduce atomic_load_acquire and 
atomic_store_release

foo->bar = 1;
smp_wmb();
x = foo;

foo->bar = 1;
smp_wmb();
atomic_set(&x, foo);

foo->bar = 1;
atomic_store_release(&x, foo);

See commit 3bbf572 
("atomics: add explicit 
compiler fence in __atomic 
memory barriers")
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Future work

● Modernize old code using memory barriers
● Use atomic_read/atomic_set

● Possibly introduce atomic_load_acquire and 
atomic_store_release

● Seqlock-protected fields should use 
atomic_read/atomic_set too
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Future work

● Change Linux-style barriers to C11 barriers
● Linux: smp_mb(), smp_rmb(), smp_wmb()

● C11: seq-cst, acquire, release

Load-load Load-store

Store-load Store-store

ACQUIRE-BARRIER

RELEASE-BARRIER

“How to achieve [a load-store barrier] varies depending 
on the machine, but in practice smp_rmb()+smp_wmb() 
should have the desired effect.” (docs/atomics.txt)
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Future work

● Yes:
● Everything seq_cst 

(load, store, RMW)

● Relaxed load/store

● C11-style memory 
barriers

● Load-acquire

● Store-release

● Load-consume (RCU)

● No:
● RMW operations 

other than seq_cst

● Compiler barrier

● Linux-style memory 
barriers
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“Atomics are like a chainsaw. Everyone can
learn to use one, but don’t let yourself get

too comfortable with it.”
- Herb Sutter
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Bonus material



Paolo Bonzini – KVM Forum 2016 

Load-acquire/store-release vs.
Acquire-barrier/release-barrier

Load-load Load-store

Store-load Store-store

LOAD-ACQUIRE?

STORE-RELEASE?

store x = 1
store release y = 1
store z = 1

store z = 1
store x = 1
store release y = 1

store z = 1
store x = 1
store-store barrier
store y = 1

✓

✗
store x = 1
store-store barrier
store y = 1
store z = 1

ACQUIRE-BARRIER

RELEASE-BARRIER
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Compiling atomics

load-consume load-acquire store-release load-seqcst store-seqcst

X86 mov mov mov mov xchg

IA64 ld.acq ld.acq st.rel ld.acq st.rel
mf

ARMv7 ldr ldr
dmb

dmb
ldr

ldr
dmb

dmb
ldr
dmb

PPC ld ld
cmp; bc; isync

lwsync
st

sync
ld
cmp; bc; isync

sync
st

AArch64 ldr ldar stlr ldar stlr
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IRIW: independent reads of independent writes

x = 1;

r1 = x;
r2 = y;

y = 1;

r3 = y;
r4 = x;

r1 = 1, r2 = 0, r3 = 1, r4 = 0?
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IRIW and single-copy atomicity

li r5, 1
stw r5, 0(x)

li r5, 1
stw r5, 0(y)

r1 = 1, r2 = 0, r3 = 1, r4 = 0?

lwz r1,0(x)
lwsync
lwz r2, 0(y)

lwz r3,0(y)
lwsync
lwz r4, 0(x)

✓ ✓ ✓ ✓
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IRIW and multiple-copy atomicity

li r5, 1
stw r5, 0(x)

li r5, 1
stw r5, 0(y)

r1 = 1, r2 = 0, r3 = 1, r4 = 0?

lwz r1,0(x)
sync
lwz r2, 0(y)

lwz r3,0(y)
sync
lwz r4, 0(x)

✓ ✓r2 = 1 r4 = 1
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