
1

Lei Cao
lei.cao@stratus.com

Dirty Memory Tracking for
Performant Checkpointing
Solutions

August 25, 2016

2

 Checkpointing is a technique to create a
fault tolerant virtual machine by
connecting a pair of servers and
periodically send VM state from a primary
server to a standby server
• Checkpointing supplies a greater level of availability relative to typical

HA or cluster style solutions in that failures cause no downtime and no
data transaction loss.

 This presentation overviews checkpointing
and then describes a set of KVM changes to
improve checkpointing performance

Software Fault Tolerance

3

 Fault tolerance via checkpointing
 Motivation
 Design goals
 Proposed KVM Changes
 Upstream status

Agenda

4

 A protected guest (OS and applications) runs
inside a virtual machine

 The hypervisor contains support to:
• Pause the VM
• Capture static and incremental IO state
• Capture incremental memory state

 Pages dirtied since last checkpoint
• Resume the VM

 The above operations are called a checkpoint
 This captured state is sent to another physical

(standby) server whose hypervisor runs a paused
VM with the same configuration

 In case of a failure of the active server/VM, the
standby has sufficient state to resume guest
operation from the last checkpoint.

Checkpointing Overview

Checkpoint
(guest paused)

Guest Running

Epoch

Guest Run
Epoch N-1

Checkpoint
N-1

Guest Run
Epoch N

Checkpoint
N

Guest Run
Epoch N+1

Active Host

Checkpoint
N-1

Standby Host
Time

Checkpoint
N

Guest Run
Epoch N+1

Active Host

Time
Standby Host

ACK

Guest Run
Epoch N+1

Checkpoint
N

Apply CP
N

Transmit CP
N

Release I/O
CP N

Guest Run
Epoch N

ACK

Checkpoint
N+1

Transmit CP
N+1

Apply CP
N+1

Release I/O
CP N+1

Guest Run
Epoch N+2

7

Known Open-Source Checkpointing
Solutions

Active

 COLO
• A checkpointing enhancement, needs an underlying

checkpointing mechanism.
• Originally released for Xen in 2012 by Intel/Huawei

leveraging Remus
• KVM upstream effort started in 2014 leveraging

MicroCheckpointing project
• Patch submission started 2015, project is very active with

widening participation.

8

Known Open-Source Checkpointing
Solutions

Inactive or Less-
active
 Remus

• Created in 2007 at the University of British Columbia (and
Citrix). Accepted upstream in Xen 4.0 in 2009, no KVM
activity.

 Kemari
• Created in 2008 at NTT Cyber Space Labs for Xen. KVM

patches created in 2010 but never upstreamed.

 MicroCheckpointing
• Created in 2013 at the IBM Watson Research Center.

Upstreaming activity now dormant, possibly superseded
by COLO.

9

Known Proprietary Checkpointing
Solutions

 Vmware FT
• 2015 (preceded by a non-checkpointing single core version)

 Stratus everRun
• Build on former Marathon MX product (released in 2010, preceded by

non-checkpointing single core version), portions GPL (e.g. KVM mods)
and portions proprietary.

 Avaya Machine Preserving High
Availability option for Aura® Application
Enablement Services
• 2012, available only for Avaya environment (not general purpose)

10

 Checkpointing performs anywhere from
>90% of a non-checkpointing VM for CPU
intensive loads to 25% for high-bandwidth
low-latency network intensive loads.

 Realistic commercial workloads typically
perform at around 50% of a non-
checkpointing VM.

 Majority of a checkpoint is spent on
capturing dirty pages

Motivation for Proposed KVM Changes

Guest Running

Epoch

Checkpoint
(guest paused)

11

 Use of VM-sized bitmap to track dirty
memory

 The number of dirty pages is bounded in a
checkpointing system
• For commercial workloads:

 Number of checkpoints per second: 150 to 1500
 Number of dirty pages per checkpoint: 300 to 3000

• Compare to 2300k total pages (8G VM)

 Traversing a large, sparsely populated
bitmap every checkpoint is time-consuming

 Copying bitmap to user space every
checkpoint is time-consuming

Current Memory Tracking Mechanism

12

 Easily portable to various kernel versions
• CentOS 6.4, CentOS 6.5, CentOS 6.6, CentOS 6.7, CentOS 7.2
• Ubuntu 14.04
• SLES12

 No change of existing KVM functionality
• New ioctls

 Co-exist with current dirty memory logging
facilities

 Usable by live migration as well as
checkpointing

 Avoid dynamic memory allocation and
freeing during checkpointing cycle
• Done when VM enters/exists checkpointing mode

Design Goals

13

 Compact lists of dirty GFNs
• One list per online vCPU

 Avoid locking when vCPUs dirty memory
• One global list

 Pages dirtied by KVM
 Overflow dirty pages from per-vCPU lists

• Avoid duplicates via bitmap
 Duplicates undesirable due to fixed size list
 Duplicates from guest time update by KVM, PV EOI set/clear by KVM
 Can reuse current bitmap

Proposed Changes (1 of 3)

14

 Dirty log full force VM exit
• Number of dirty pages is bounded per epoch due to limited buffering
• Exceeding buffer size results in expensive resynchronization
• Force VM exit to user space when number of dirty pages reaches the

threshold
• Threshold calculated by user space and passed to KVM during memory

tracking initialization

Proposed Changes (2 of 3)

15

 Initialization/cleanup (KVM_INIT_MT)
• During initialization

 User space indicates initialization or cleanup
 User space specifies max number of dirty pages per checkpoint cycle

 Activate/deactivate (KVM_ENABLE_MT)
• Allocate/free dirty lists
• Enable/disable dirty traps

Proposed Changes (3 of 3)

16

 Prepare for new checkpoint cycle
(KVM_PREPARE_MT_CP)
• Reset the indexes/counters for all dirty lists

 Fetch dirty list (KVM_MT_SUBLIST_FETCH)
• Support fetch from multiple user space threads

 Rearm the dirty traps
(KVM_RESET_DIRTY_PAGES)

Proposed Changes (3 of 3) continued

17

Execution flow

Prepar
e

FetchReset

Enable

Init

Disabl
e

Cleanu
p

Checkpoint cycles

Enter checkpointing
mode

Exit checkpointing
mode

18

 The proposed changes do not break live
migration

 Checkpointing mode can be used for live
migration
• Need user space support

 Improve the predictability of live
migrations of memory write intensive
workloads
• Autoconverge tries to address this problem via cpu throttling
• Cpu throttling may not be effective for some workloads where memory

write speed is not dependent on CPU execution speed

How about live migration?

19

 Version 1 submitted to KVM mailing list
• [PATCH 0/6] KVM: Dirty memory tracking for performant checkpointing

and improved live migration
• http://www.spinics.net/lists/kvm/msg131356.html

 Version 2 planned for September
submission

Upstream Status

	Slide 1
	Software Fault Tolerance
	Agenda
	Checkpointing Overview
	
	
	Known Open-Source Checkpointing Solutions
	Known Open-Source Checkpointing Solutions
	Known Proprietary Checkpointing Solutions
	Motivation for Proposed KVM Changes
	Current Memory Tracking Mechanism
	Design Goals
	Proposed Changes (1 of 3)
	Proposed Changes (2 of 3)
	Proposed Changes (3 of 3)
	Proposed Changes (3 of 3) continued
	Execution flow
	How about live migration?
	Upstream Status

