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 Checkpointing is a technique to create a 
fault tolerant virtual machine by 
connecting a pair of servers and 
periodically send VM state from a primary 
server to a standby server
• Checkpointing supplies a greater level of availability relative to typical 

HA or cluster style solutions in that failures cause no downtime and no 
data transaction loss. 

 This presentation overviews checkpointing 
and then describes a set of KVM changes to 
improve checkpointing performance

Software Fault Tolerance 
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 Fault tolerance via checkpointing
 Motivation
 Design goals
 Proposed KVM Changes
 Upstream status

Agenda



4

 A protected guest (OS and applications) runs 
inside a virtual machine

 The hypervisor contains support to:
• Pause the VM
• Capture static and incremental IO state
• Capture incremental memory state

 Pages dirtied since last checkpoint
• Resume the VM

 The above operations are called a checkpoint
 This captured state is sent to another physical 

(standby) server whose hypervisor runs a paused 
VM with the same configuration

 In case of a failure of the active server/VM, the 
standby has sufficient state to resume guest 
operation from the last checkpoint.

Checkpointing Overview
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Known Open-Source Checkpointing 
Solutions

Active

 COLO
• A checkpointing enhancement, needs an underlying 

checkpointing mechanism.
• Originally released for Xen in 2012 by Intel/Huawei 

leveraging Remus
• KVM upstream effort started in 2014 leveraging 

MicroCheckpointing project
• Patch submission started 2015, project is very active with 

widening participation.
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Known Open-Source Checkpointing 
Solutions

Inactive or Less-
active
 Remus

• Created in 2007 at the University of British Columbia (and 
Citrix).  Accepted upstream in Xen 4.0 in 2009, no KVM 
activity.

 Kemari
• Created in 2008 at NTT Cyber Space Labs for Xen.  KVM 

patches created in 2010 but never upstreamed.

 MicroCheckpointing
• Created in 2013 at the IBM Watson Research Center.  

Upstreaming activity now dormant, possibly superseded 
by COLO.
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Known Proprietary Checkpointing 
Solutions

 Vmware FT
• 2015 (preceded by a non-checkpointing single core version)

 Stratus everRun
• Build on former Marathon MX product (released in 2010, preceded by 

non-checkpointing single core version), portions GPL (e.g. KVM mods) 
and portions proprietary.

 Avaya Machine Preserving High 
Availability option for Aura® Application 
Enablement Services
• 2012, available only for Avaya environment (not general purpose)
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 Checkpointing performs anywhere from 
>90% of a non-checkpointing VM for CPU 
intensive loads to 25% for high-bandwidth 
low-latency network intensive loads. 

 Realistic commercial workloads typically 
perform at around 50% of a non-
checkpointing VM.

 Majority of a checkpoint is spent on 
capturing dirty pages

Motivation for Proposed KVM Changes
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 Use of VM-sized bitmap to track dirty 
memory

 The number of dirty pages is bounded in a 
checkpointing system
• For commercial workloads:

 Number of checkpoints per second: 150 to 1500
 Number of dirty pages per checkpoint: 300 to 3000

• Compare to 2300k total pages (8G VM)

 Traversing a large, sparsely populated 
bitmap every checkpoint is time-consuming

 Copying bitmap to user space every 
checkpoint is time-consuming

Current Memory Tracking Mechanism
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 Easily portable to various kernel versions
• CentOS 6.4, CentOS 6.5, CentOS 6.6, CentOS 6.7, CentOS 7.2
• Ubuntu 14.04
• SLES12

 No change of existing KVM functionality
• New ioctls

 Co-exist with current dirty memory logging 
facilities

 Usable by live migration as well as 
checkpointing

 Avoid dynamic memory allocation and 
freeing during checkpointing cycle
• Done when VM enters/exists checkpointing mode

Design Goals
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 Compact lists of dirty GFNs
• One list per online vCPU

 Avoid locking when vCPUs dirty memory
• One global list

 Pages dirtied by KVM
 Overflow dirty pages from per-vCPU lists

• Avoid duplicates via bitmap
 Duplicates undesirable due to fixed size list
 Duplicates from guest time update by KVM, PV EOI set/clear by KVM
 Can reuse current bitmap

Proposed Changes (1 of 3)
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 Dirty log full force VM exit
• Number of dirty pages is bounded per epoch due to limited buffering
• Exceeding buffer size results in expensive resynchronization
• Force VM exit to user space when number of dirty pages reaches the 

threshold
• Threshold calculated by user space and passed to KVM during memory 

tracking initialization

Proposed Changes (2 of 3)
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 Initialization/cleanup (KVM_INIT_MT)
• During initialization

 User space indicates initialization or cleanup
 User space specifies max number of dirty pages per checkpoint cycle

 Activate/deactivate (KVM_ENABLE_MT)
• Allocate/free dirty lists
• Enable/disable dirty traps

Proposed Changes (3 of 3)
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 Prepare for new checkpoint cycle 
(KVM_PREPARE_MT_CP)
• Reset the indexes/counters for all dirty lists

 Fetch dirty list (KVM_MT_SUBLIST_FETCH)
• Support fetch from multiple user space threads

 Rearm the dirty traps 
(KVM_RESET_DIRTY_PAGES)

Proposed Changes (3 of 3) continued
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Execution flow
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 The proposed changes do not break live 
migration

 Checkpointing mode can be used for live 
migration
• Need user space support

 Improve the predictability of live 
migrations of memory write intensive 
workloads
• Autoconverge tries to address this problem via cpu throttling
• Cpu throttling may not be effective for some workloads where memory 

write speed is not dependent on CPU execution speed

How about live migration?
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 Version 1 submitted to KVM mailing list
• [PATCH 0/6] KVM: Dirty memory tracking for performant checkpointing 

and improved live migration
• http://www.spinics.net/lists/kvm/msg131356.html

 Version 2 planned for September 
submission

Upstream Status
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