ORACLE

Experience in using Qemu/KVM as a tool to develop
software for a complex new hardware device

Knut Omang, KVM Forum/LinuxCon Aug 24, 2016

Agenda

e About our development target

e Our goals - why virtualization and QEMU/KVM?

o A taste of the tool set developed and some use cases
o« What we achieved

e Challenges and ideas for further work

RACLE 8/24/16 Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

Device: Oracle Infiniband (IB) HCA

e QOracle's first “in-house” Infiniband HCA

— Highly asynchronous usage model

— SR/IOV support w/integrated virtual switches

— Integrated subnet management agent

— On-chip MMU compatible with CPU page tables
— NIC offloads for Ethernet over IB and IP over IB

RACLE 8/24/16 Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

Infiniband (IB): Defined by software and hardware

e« HCA: Host Channel Adapter (= IB network adapter)

— Defines set of operations to support

— does not define if hardware or software implementation

— Standard defines verbs semantics, requirements, not syntax/implementation
e Linux implementation:

— RDMA (= Remote Direct Memory Access) support

— Kernel and user space (libibverbs)
— Driver entry point support at kernel and user level

e |B standard counts ~2500 pages...

— but still details left to implementations..

RACLE 8/24/16 Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

The Oracle IB HCA SW opportunity

o Participate in making
something new and cool

e Start from clean sheets -
little baggage - do it
right!

o SW effort started early
enough to influence HW!

e The adventure!

“...far, far away he could see something
light and shimmering...”

RACLE 8/24/16 Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

Good tools half the work..

or

- and better quality results too!

R CLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

Some software team “survival rules”

o Time set aside to develop tools a fundamental success criteria

- “Yes, a great idea, as long as it doesn't take any time...”

e Write usable target software from the start
— Driver, firmware and library code should be as little affected by lack of hardware as possible!
— Make tests early as valuable as possible also later in project

o Test driven development whenever practically possible

— Not considered fully tested until part of regression testing:
e “ltested it a few days ago and it worked then..”

— Nobody is excempt from writing and maintaining test, test code and -tools.
— Test/verification related work probably more than 95% of the whole combined software task

e Continuous integration
— Check-in testing + nightly

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

Motivation for using virtualization

e Allow target software and firmware development to start early

e« Minimize the impact of “test only” code

e Understand (and play with) the new functional options of PCle (vs PCl)
e Find bugs/weaknesses/design flaws in hardware before tapeout

e Reduce SW team time on critical path = minimize pain..

e Get more testing out of the same hardware

RACLE 8/24/16 Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

Why QEMU/KVM?

e Source access - needed to be able to extend/modify
e Shortest path to get something useful to demonstrate

— | had already used it in a previous project

o Excellent hypervisor environment = a full Linux!

e PCle support => Q35 ... bleeding edge!

e Nested virtualization (device assighnment, SR/IOV, Xen target OS)
e The wonderful COW support in gcow?2!

o A good and active community

RACLE 8/24/16 Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

Additional challenge factors

o Wanted flexible solution for current and future simulation/emulation

A high level device model under development

Access to RTL under heavy evolvement - could we automate and interface?
Other simulation/emulation models? Be prepared for the next step

Make the system flexible enough to be useful to other hardware projects

o Limited hardware resources available for software testing

Old servers, limited memory, 60G disks..

o Little support resources available

needed a solution simple to deploy and manage
avoid reinventing wheels - rely on existing tools if possible/achievable

e QEMU vs Virtualbox vs Xen (Oracle VM)

RACLE 8/24/16 Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

10

The abstract simulated Oracle Infiniband HCA

QEMU/KVM process

test program)
dma user stack firmware emulator

rdma)
kemel HCA driver
stack

IB switch
simulator

ld_pci [— tcp + PCle » hi .
- transactions high level simulator
i\

\

> RTL level simulator
per instance

other dyn.linked | __ . [ICIGNIAVERTE N
device model HCA device model o
configuration

* * * firmware emulator

log =

serial ports (console + kgdb) agmp

ORACLE

ld_pci: dynamically loadable PCI device support

Plugin framework
single APl header file, minimal include deps

— <10 callbacks/values implemented by device model, incl. API version info

— ~30 utility functions implemented by VMM
« implementations by QEMU patch set, [VirtualBox], kernel unit test framework, ...?

— single gemu patch: 16 files changed, 1069 insertions(+), 4 deletions
Callbacks to converge towards QEMU API

— goal to allow models to be compiled “directly” against QEMU
— + “lift out” existing devices..
Recent impl for QEMU benefits increasingly from:

— hotplug support improvements
— properties and the QEMU object model

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

12

Id

_pci plugin for the Oracle Infiniband HCA

PCle enumeration - device realization:

— path and name property
« QEMU tries to look up device type - if it fails, asks Id_pci. Device specified as eg.
-device sif,path=/var/lib/kvmrun/sif/o4kvml70,id=sif0,bus=pcie port.0
Triggers dlopen if necessary (ref.cnt): Each .so adds n types to QEMU type definitions
— device instance create
« read configuration file w/ip:port
e tryto connect to simulator
« fallback implementation if no simulator instance listening

Device unrealize:
— disconnect from simulator if necessary
— delete device instance
— deref, if ref.cnt == 0: Remove owned types from type definitions, dlclose()

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

13

Infiniband communication example

user
process 1

MR

il"i"f"jiiij i ‘i\i; L
ORACLE

MR
user
process 2
SQ cQ o
QP
RQ cQ E:J
CQ -

Infiniband communication example

ib header

user data

ib header

user data

MR
user
process 1
SQL, cqe
QP
RQ [} CQE;‘J
CQ <

thecideobtmpedl) receive a message

ORACLE

user
process 2

MR

H,Ak \J

QP

SQ| L,
RQLS,

CQ

A

Modeling the PCle side of the Oracle Infiniband HCA

PCIE config space
— 3 BARs: FW access BAR, MSIX BAR, WR posting BAR (“Collect buffers”)
— SR/IOV capability and support

— Various other PCle capabilities

MSIX support for interrupts

(Lots of) DMA
— triggered by WRs

- implicit by device

Initial impl: Use QEMU support

As simulation support matured: Move functions over..
— but keep/support fallback!

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

16

Key issues for efficient driver development

Development cycle time

- too long: Have to multiplex to be efficient - context switch (cost? what is too long?)

— boot time (servers..., init vs systemd, ...) [power-on to ssh access server: 3 min, VM: 30 secs]
— non-fatal error...reload cycle time [hotplug device on VM: 11 sec]

Observability
— IB: Alot is handled by hardware, at very high speed

— Hard to observe without affecting output

Debugging facilities + interactive when possible/necessary

Test coverage
— what do we dare to change?

— huge test space: Infiniband, OFED/rdma impl, MLX “compliance”, ULP/appl quirks, OS distro, OS versions, error
scenarios,...

— initial focus on “safety net”

— Can't write all tests multiple times - they have to work in all environments!

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

17

Observability: Debugging communication flow

o Hardware: relatively black box

Some debugging facilities in hardware, but limited use cases

can time share on PCle tracer (heavily contended resource, very expensive, lab work to set up)
limited memory in tracer, heavy user interface

TBD: Parsing output + wireshark support...

e Simulation: Full insight at all levels

driver logging, ftrace etc

Qemu plugin level symbolic packet snooping

Simulator frontend logging

RTL simulation: Waveform output - accurate but painfully slow

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

18

Testing - safety net: Controlling DMA access to memory

e Catch early dev bugs before they lead to random memory errors:
— driver bug calculates invalid address in request to HCA
— detect hardware/simulator errors or wrong/unexpected usage from driver

e Initial version: Implement driver DMA API

— Communicate via CSRs in simulation only BAR page
— simple “iommu” support in Qemu device model to trap and fault on inappropriate accesses

e Virtual IOMMU support

— Initial patch set
— GSOC project => success thanks to Jan Kiszka!

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

19

Debugging facilities: symbolic interactive kernel debugging

e script to load driver while saving symbol info to NFS

o gdb + load symbol defs

o kgdb enabled guest kernel

e 2 serial ports to separate console from kgdb

e Handle NULL pointer exception/fatal crash during driver load

— boot with 0 devices
— load driver = save symbol info to NFS

— hot plug a new device = panic, but with gdb symbolic debugging support

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

20

*T SPEND A LOT OF TiIME ON THIS TASK.
T SHOULD |JRITE A PROGRAM AUTOMATING IT™

THEORY:
WRITNG~
CODE
WORK ———5— umrimon FREE https://xked.com/1319/
ORGNAL THK \IRED OVER
i and

http://events.linuxfoundation.org/
sites/events/files/
slides/LinuxCon2015-Intel.pdf

ORACLE

Managing 100's of (almost identical) VMs

« disk space, no time for management/training/docs
o enter kvmrun: shell script + config + command line + rpm support

templates using gcow2 backing files
start <vm list>, stop <vm list>
simple numbering scheme for names, ethernet addresses, port assignment

cfg feature creep: pci or pcie, #of root ports, vlan support, multiple subnets, bridges, disk interface,
ethernet model, memory size, grub, snapshots, kickstart, passthrough, vfio, auth. setup... (sigh..)

e Reinvented wheel?

Looked at libvirt etc...
oVirt, ...?
At the time: Immature, needed more control, had little time => future work...

Not to mention brain stretch...

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 22

Deployment today

Continuous integration based on Jenkins and Gerrit
Every commit (several git projects) subject to 2-stage test

— Smoke tests mostly in simulated environments (parallel on multiple commits)
— Serialized checkin regression tests (hw and simulation)

Nightly long regression test set
Test base:

— Gtest based tests (unit tests + simple system tests)
— Standard RDMA test applications
— Several other stress tests

Not achieavable with same amount of HW without VMs

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

23

Summary: What did we achieve?

o Ability to start very early in the hardware development

e Found hardware bugs/minor design issues (before tapeout!)

e Significantly shorter development cycle both for firmware and software

e Had working driver (and firmware) when first hardware arrived

e Longer term gains: Toolbox and infrastructure reusable for future projects

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

24

What more could we have done?

o Alot - the sky is the limit!
e Resource allocation issue
e Trust, competence - a lot can go wrong too!

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

25

Some technical challenges

e Churnin QEMU, but for the good ;-)

— cleanup handling, ongoing refactoring, understanding: multithreading issues, object models..

e Memory consistency over PCle

— write ordering from single initiator

o Rebase while keeping team and Cl system happy...

— .rpms, testing the test system, testing the test system tests....

e Maintenance of 100's of almost identical VMs...

— use case fairly different from “normal” VM usages..!

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

26

The timeout scaling problem

Response times:

e Hardware: nanosecond range

o High level simulation: millisecond range

o Full RTL simulation in software: 10s of seconds range

Problem: Timeouts!

o Partial solution for rdma stack: patch to add scaling factor parameter
o Filtering system log :-(

o Network stack?

o Core kernel: soft lockups, NMls,...

o« Can QEMU help?

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

Further QEMU related work

e« The timeout scaling problem

e Better tools to “underneath” the VM

- stopping the OS of a virtual machine - ~C equivalent to get to kgdb
— have 'echo g > /proc/sysrg-trigger' but only if system is live
-~ (right now: identify a trigger, call kgdb_breakpoint(), recompile, hotplug..)

e Migrate from huge shell script VMMS to oVirt, virt-manager
e« QMP improvements/extensions...

« Get my SR/IOV patches merged :-)

e New PCle features such as PRI (Page Request Interface), ...

e |deas?

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

28

Changing peoples minds..

Some challenges mostly in the “social engineering” category:

Long term vs short term!

Early deadlines - management need for tracking (= trust)
Minimize + justify recurring overhead

Make good enough arguments for competence diversity

The evolutionary approach...!

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

29

“Neat” — also for developers?

IQ CI—E CCCCC ight © 2016 Oracle and /or its affiliates. All rights reserved .

Personal takeaway

If you want to understand how some piece of hardware works, try to
write an emulation for it!

Questions?

RACLE Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

31

