
<Insert Picture Here>

Knut Omang, KVM Forum/LinuxCon Aug 24, 2016

Experience in using Qemu/KVM as a tool to develop
software for a complex new hardware device

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 8/24/16 2

Agenda
● About our development target
● Our goals - why virtualization and QEMU/KVM?
● A taste of the tool set developed and some use cases
● What we achieved
● Challenges and ideas for further work

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 8/24/16 3

Device: Oracle Infiniband (IB) HCA
● Oracle's first “in-house” Infiniband HCA

– Highly asynchronous usage model

– SR/IOV support w/integrated virtual switches

– Integrated subnet management agent

– On-chip MMU compatible with CPU page tables

– NIC offloads for Ethernet over IB and IP over IB

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 8/24/16 4

Infiniband (IB): Defined by software and hardware

● HCA: Host Channel Adapter (= IB network adapter)
– Defines set of operations to support

– does not define if hardware or software implementation

– Standard defines verbs semantics, requirements, not syntax/implementation

● Linux implementation:
– RDMA (= Remote Direct Memory Access) support

– Kernel and user space (libibverbs)

– Driver entry point support at kernel and user level

● IB standard counts ~2500 pages…
– but still details left to implementations..

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 8/24/16 5

● Participate in making
something new and cool

● Start from clean sheets -
little baggage - do it
right!

● SW effort started early
enough to influence HW!

● The adventure!

The Oracle IB HCA SW opportunity

“...far, far away he could see something
light and shimmering...”

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 6

Good tools half the work..

or

- and better quality results too!

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 7

Some software team “survival rules”
● Time set aside to develop tools a fundamental success criteria

– “Yes, a great idea, as long as it doesn't take any time...”

● Write usable target software from the start
– Driver, firmware and library code should be as little affected by lack of hardware as possible!
– Make tests early as valuable as possible also later in project

● Test driven development whenever practically possible
– Not considered fully tested until part of regression testing:

● “I tested it a few days ago and it worked then...”

– Nobody is excempt from writing and maintaining test, test code and -tools.
– Test/verification related work probably more than 95% of the whole combined software task

● Continuous integration
– Check-in testing + nightly

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 8/24/16 8

Motivation for using virtualization
● Allow target software and firmware development to start early
● Minimize the impact of “test only” code
● Understand (and play with) the new functional options of PCIe (vs PCI)
● Find bugs/weaknesses/design flaws in hardware before tapeout
● Reduce SW team time on critical path = minimize pain..
● Get more testing out of the same hardware

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 8/24/16 9

Why QEMU/KVM?
● Source access - needed to be able to extend/modify
● Shortest path to get something useful to demonstrate

– I had already used it in a previous project

● Excellent hypervisor environment = a full Linux!
● PCIe support => Q35 … bleeding edge!
● Nested virtualization (device assignment, SR/IOV, Xen target OS)
● The wonderful COW support in qcow2!
● A good and active community

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 8/24/16 10

Additional challenge factors
● Wanted flexible solution for current and future simulation/emulation

– A high level device model under development

– Access to RTL under heavy evolvement - could we automate and interface?

– Other simulation/emulation models? Be prepared for the next step

– Make the system flexible enough to be useful to other hardware projects

● Limited hardware resources available for software testing
– Old servers, limited memory, 60G disks..

● Little support resources available
– needed a solution simple to deploy and manage

– avoid reinventing wheels - rely on existing tools if possible/achievable

● QEMU vs Virtualbox vs Xen (Oracle VM)

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 8/24/16 11

The abstract simulated Oracle Infiniband HCA

high level simulator

QEMU/KVM process

guest

kernel HCA driver

user
test program

 rdma user stack

rdma
kernel
stack

ld_pci

dyn.linkable
HCA device model

other dyn.linked
device model

...

 device inst.

device inst.

...

RTL level simulator

IB switch
simulator

firmware emulator

tcp + PCIe

transactions

firmware emulator

serial ports (console + kgdb) qmp

per instance
configuration

log

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 12

ld_pci: dynamically loadable PCI device support

● Plugin framework
● single API header file, minimal include deps

– < 10 callbacks/values implemented by device model, incl. API version info

– ~30 utility functions implemented by VMM
● implementations by QEMU patch set, [VirtualBox], kernel unit test framework, …?

– single qemu patch: 16 files changed, 1069 insertions(+), 4 deletions

● Callbacks to converge towards QEMU API
– goal to allow models to be compiled “directly” against QEMU

– + “lift out” existing devices..

● Recent impl for QEMU benefits increasingly from:
– hotplug support improvements

– properties and the QEMU object model

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 13

ld_pci plugin for the Oracle Infiniband HCA
● PCIe enumeration - device realization:

– path and name property
● QEMU tries to look up device type - if it fails, asks ld_pci. Device specified as eg.

-device sif,path=/var/lib/kvmrun/sif/o4kvm170,id=sif0,bus=pcie_port.0

Triggers dlopen if necessary (ref.cnt): Each .so adds n types to QEMU type definitions

– device instance create
● read configuration file w/ip:port
● try to connect to simulator
● fallback implementation if no simulator instance listening

● Device unrealize:
– disconnect from simulator if necessary
– delete device instance
– deref, if ref.cnt == 0: Remove owned types from type definitions, dlclose()

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 14

Infiniband communication example

CQ

MR

SQ

RQ

CQ

QP
CQ

user
process 1

CQ

SQ

RQ

CQ

QP
CQ

MR

user
process 2

ibv_reg_mr()allocate some memoryibv_create_cq()ibv_create_qp()

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 15

Infiniband communication example

CQ

SQ

RQ

CQ

QP
CQ

MR

user
process 1

CQ

SQ

RQ

CQ

QP
CQ

MR

user
process 2

ib header

user data

ib header

user data

ibv_post_recv()ibv_post_send()ibv_poll_cqdecide where to receive a message

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 16

Modeling the PCIe side of the Oracle Infiniband HCA

● PCIE config space
– 3 BARs: FW access BAR, MSIX BAR, WR posting BAR (“Collect buffers”)

– SR/IOV capability and support

– Various other PCIe capabilities

● MSIX support for interrupts
● (Lots of) DMA

– triggered by WRs

– implicit by device

● Initial impl: Use QEMU support
● As simulation support matured: Move functions over..

– but keep/support fallback!

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 17

Key issues for efficient driver development
● Development cycle time

– too long: Have to multiplex to be efficient - context switch (cost? what is too long?)
– boot time (servers… , init vs systemd, …) [power-on to ssh access server: 3 min, VM: 30 secs]
– non-fatal error...reload cycle time [hotplug device on VM: 11 sec]

● Observability
– IB: A lot is handled by hardware, at very high speed
– Hard to observe without affecting output

● Debugging facilities + interactive when possible/necessary
● Test coverage

– what do we dare to change?
– huge test space: Infiniband, OFED/rdma impl, MLX “compliance”, ULP/appl quirks, OS distro, OS versions, error

scenarios,…
– initial focus on “safety net”
– Can't write all tests multiple times - they have to work in all environments!

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 18

Observability: Debugging communication flow
● Hardware: relatively black box

– Some debugging facilities in hardware, but limited use cases

– can time share on PCIe tracer (heavily contended resource, very expensive, lab work to set up)

– limited memory in tracer, heavy user interface

– TBD: Parsing output + wireshark support...

● Simulation: Full insight at all levels
– driver logging, ftrace etc

– Qemu plugin level symbolic packet snooping

– Simulator frontend logging

– RTL simulation: Waveform output - accurate but painfully slow

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 19

Testing - safety net: Controlling DMA access to memory

● Catch early dev bugs before they lead to random memory errors:
– driver bug calculates invalid address in request to HCA

– detect hardware/simulator errors or wrong/unexpected usage from driver

● Initial version: Implement driver DMA API
– Communicate via CSRs in simulation only BAR page

– simple “iommu” support in Qemu device model to trap and fault on inappropriate accesses

● Virtual IOMMU support
– Initial patch set

– GSOC project => success thanks to Jan Kiszka!

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 20

Debugging facilities: symbolic interactive kernel debugging

● script to load driver while saving symbol info to NFS
● gdb + load symbol defs
● kgdb enabled guest kernel
● 2 serial ports to separate console from kgdb
● Handle NULL pointer exception/fatal crash during driver load

– boot with 0 devices

– load driver → save symbol info to NFS

– hot plug a new device → panic, but with gdb symbolic debugging support

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 21

 https://xkcd.com/1319/

and

http://events.linuxfoundation.org/
sites/events/files/
slides/LinuxCon2015-Intel.pdf

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 22

Managing 100's of (almost identical) VMs
● disk space, no time for management/training/docs
● enter kvmrun: shell script + config + command line + rpm support

– templates using qcow2 backing files

– start <vm list>, stop <vm list>

– simple numbering scheme for names, ethernet addresses, port assignment

– cfg feature creep: pci or pcie, #of root ports, vlan support, multiple subnets, bridges, disk interface,
ethernet model, memory size, grub, snapshots, kickstart, passthrough, vfio, auth. setup… (sigh..)

● Reinvented wheel?
– Looked at libvirt etc...
– oVirt, …?

– At the time: Immature, needed more control, had little time => future work…

– Not to mention brain stretch...

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 23

Deployment today
● Continuous integration based on Jenkins and Gerrit
● Every commit (several git projects) subject to 2-stage test

– Smoke tests mostly in simulated environments (parallel on multiple commits)

– Serialized checkin regression tests (hw and simulation)

● Nightly long regression test set
● Test base:

– Gtest based tests (unit tests + simple system tests)

– Standard RDMA test applications

– Several other stress tests

● Not achieavable with same amount of HW without VMs

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 24

Summary: What did we achieve?
● Ability to start very early in the hardware development
● Found hardware bugs/minor design issues (before tapeout!)
● Significantly shorter development cycle both for firmware and software
● Had working driver (and firmware) when first hardware arrived
● Longer term gains: Toolbox and infrastructure reusable for future projects

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 25

What more could we have done?
● A lot - the sky is the limit!
● Resource allocation issue
● Trust, competence - a lot can go wrong too!

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 26

Some technical challenges
● Churn in QEMU, but for the good ;-)

– cleanup handling, ongoing refactoring, understanding: multithreading issues, object models..

● Memory consistency over PCIe
– write ordering from single initiator

● Rebase while keeping team and CI system happy…
– .rpms, testing the test system, testing the test system tests….

● Maintenance of 100's of almost identical VMs…
– use case fairly different from “normal” VM usages..!

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 27

The timeout scaling problem
Response times:

● Hardware: nanosecond range
● High level simulation: millisecond range
● Full RTL simulation in software: 10s of seconds range

 Problem: Timeouts!
● Partial solution for rdma stack: patch to add scaling factor parameter
● Filtering system log :-(
● Network stack?
● Core kernel: soft lockups, NMIs,...
● Can QEMU help?

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 28

Further QEMU related work
● The timeout scaling problem
● Better tools to “underneath” the VM

– stopping the OS of a virtual machine - ^C equivalent to get to kgdb

– have 'echo g > /proc/sysrq-trigger' but only if system is live

– (right now: identify a trigger, call kgdb_breakpoint(), recompile, hotplug..)

● Migrate from huge shell script VMMS to oVirt, virt-manager
● QMP improvements/extensions...
● Get my SR/IOV patches merged :-)
● New PCIe features such as PRI (Page Request Interface), …
● Ideas?

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 29

Changing peoples minds..
Some challenges mostly in the “social engineering” category:

● Long term vs short term!
● Early deadlines - management need for tracking (= trust)
● Minimize + justify recurring overhead
● Make good enough arguments for competence diversity

● The evolutionary approach…!

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 30

“Neat” – also for developers?

Copyright © 2016 Oracle and/or its affiliates. All rights reserved. 31

Personal takeaway
● If you want to understand how some piece of hardware works, try to

write an emulation for it!

● Questions?

