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Prefetch cache

• Idea – Fetch the data before it is needed

• There are different types of prefetch cache that focus on 
different read patterns

• Prefetching sequential data read (read-ahead) is one of 
the types of such cache
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Read-ahead
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4K 16K

read

•Random access
• can displace a lot of cache

• can lead to performance degradation

• Sequential read detection?



QEMU Block Filter Driver

4

Guest
virtio

sata

Ide
…

pcache

qcow2
parallels

vmdk
…

raw

Host fs



Parallel and sequential read
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1    2    3     4    5    6

sequential stream 1

A    B C D    E F

sequential stream 2

g    h     i j     k l

sequential stream 3

1    A    B     g 2    C

one of the possible sequences

pcache



Sequential read detection 
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PCache AIO read overview
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• Skip large requests (by default larger then 64Kb)

•Update request statistics

•Cache lookup
• hit
• partial hit
• miss

•Read-ahead
• check request sequence
• read into cache a chunk of data form the end of the current 

request



Cache memory
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• The cache memory has limited size (4Mb by default)

• The cache is managed by LRU algorithm



Why you need LRU for the prefetch cache?
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If you have read one part of the node, then there is a high 
probability that you will soon read the remaining parts of 
the node.

node 211 node 210 displacement

sequential read 

456789

node 209



Partial cache hit
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PCache AIO write overview
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•Drop all nodes intersecting with request

•Write-through



Rescheduling AIO requests
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What to do if the requested node 

is in-flight?
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PCache AIO request complete
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How to complete an request which expects other 

requests ?



Read-ahead policy
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• Original requests are not written to the cache and only serve to 
update statistics

• Filtering of large requests helps to detect sequential read

• If part of the readahead is already in the cache then only the 
missing pieces will be fetched from disk
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current request

check readahead_size

do readahead
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SSDSC2BW120A4 EXT4 QEMU 2.6.50 VirtIO

qcow2 Linux 4.4.0 

Fedora-22 2SMP 

2GB VM

QEMU 2.6.50 VirtIO

qcow2 Linux 4.4.0 

Fedora-22 2SMP 2GB 

VM + dataplane

QEMU 2.6.50 VirtIO qcow2 Linux 

4.4.0 Fedora-22 2SMP 2GB VM + 

pcache

QEMU 2.6.50 VirtIO qcow2 Linux 4.4.0 

Fedora-22 2SMP 2GB VM + 

dataplane + pcache

# ↓ I/O Test #1 vs #1 vs #1 vs #2 vs #1 vs #2 vs #3

1 2G-read-seq-4K(01) 100% +10.7% +341% +298% +490% +433% +33.7%

2 2G-read-seq-4K(04)
100%

+5.0% +231% +215% +225% +210% -1.7%

3 2G-read-seq-4K(16) 100% +0.1% +80.3% +80.1% +72.1% +71.9% -4.6%

4 2G-read-seq-4K-AIO4(01)
100%

+43.3% +190% +102% +191% +103% +0.2%

5 2G-read-seq-4K-AIO4(04)
100%

+1.4% +79.0% +76.6% +78.2% +75.8% -0.4%

6 2G-read-seq-4K-AIO4(16)
100%

+0.6% +77.6% +76.5% +70.3% +69.3% -4.1%

7 2G-read-seq-4K-AIO32(01) 100% -7.8% -0.8% +7.6% +1.2% +9.7% +2.0%

8 2G-read-seq-4K-AIO32(04) 100% -4.4% +21.8% +27.4% +24.9% +30.7% +2.6%

9 2G-read-seq-4K-AIO32(16) 100% -3.0% +46.4% +50.8% +46.7% +51.1% +0.2%

10 2G-read-rnd-4K(01) 100% +1.1% +3.0% +1.9% +1.9% +0.9% -1.0%

11 2G-read-rnd-4K(04)
100%

+2.5% +0.4% -2.0% +1.7% -0.8% +1.3%

12 2G-read-rnd-4K(16)
100%

+7.1% +5.4% -1.6% +5.7% -1.3% +0.3%

13 2G-read-rnd-4K-AIO4(01)
100%

+1.2% -0.8% -1.9% +1.5% +0.3% +2.3%

14 2G-read-rnd-4K-AIO4(04)
100%

+2.4% +6.9% +4.3% +7.2% +4.7% +0.3%

15 2G-read-rnd-4K-AIO4(16)
100%

-0.5% +4.9% +5.4% +4.1% +4.6% -0.8%

16 2G-read-rnd-4K-AIO32(01)
100%

+1.4% +0.1% -1.3% +1.5% +0.1% +1.4%

17 2G-read-rnd-4K-AIO32(04)
100%

+2.9% +0.4% -2.5% +3.1% +0.1% +2.7%

18 2G-read-rnd-4K-AIO32(16)
100%

-4.6% -0.5% +4.3% +0.6% +5.4% +1.1%



Read directory
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SSDSC2BW120A4 EXT4 QEMU 2.6.50 

VirtIO qcow2 

Linux 4.4.0 

Fedora-22 

2SMP 2GB VM

QEMU 2.6.50 VirtIO qcow2 Linux 4.4.0 

Fedora-22 2SMP 2GB VM + pcache

# ↓ Test Scores Scores vs #1

1

dir_readdir

Testcase: create a directory and populate it with 10  

subdirs and 10 files with max depth 3 once before 

test. Total: there are 10^3 dirs and 10^3 files.: 

All files are empty: 

(1) open() root dir, then readdir() recursively, 

close():

134 137

+1.9%



Qemu bench
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4K AIO read requests (pcache)
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For readahead_size = 64Kb, it was the expected result



4K AIO read requests (pcache + iothread)
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iothread helped to merge a lot of requests



Conclusions
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• PCache can optimize certain I/O patterns without 
pessimizing others

• PCache implementation in the form of the driver filter is 
unintrusive

• PCache is not universally useful, benchmark your 
patterns before enabling



Questions?
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