
I/O Prefetch Cache as QEMU Block
Filter Driver

Pavel Butsykin

Virtuozzo, inc.

KVM Forum 2016

Prefetch cache

• Idea – Fetch the data before it is needed

• There are different types of prefetch cache that focus on
different read patterns

• Prefetching sequential data read (read-ahead) is one of
the types of such cache

2

Read-ahead

3

4K 16K

read

•Random access
• can displace a lot of cache

• can lead to performance degradation

• Sequential read detection?

QEMU Block Filter Driver

4

Guest
virtio

sata

Ide
…

pcache

qcow2
parallels

vmdk
…

raw

Host fs

Parallel and sequential read

5

1 2 3 4 5 6

sequential stream 1

A B C D E F

sequential stream 2

g h i j k l

sequential stream 3

1 A B g 2 C

one of the possible sequences

pcache

Sequential read detection

6

RBTree key

pool requests
120K

4K

64K

10K

112K

8K

0

32K

124K

1M

4M

8K

F
IF

O

request
128K

512K 630K

offset size

Node

124K - 1M

response

PCache AIO read overview

7

• Skip large requests (by default larger then 64Kb)

•Update request statistics

•Cache lookup
• hit
• partial hit
• miss

•Read-ahead
• check request sequence
• read into cache a chunk of data form the end of the current

request

Cache memory

8

728K-30K

606K-26K

558K-8K 656K-17K

780K-26K

758K-22K 816K-2K

0-412K 702K-26K 1021K-3K653K-3K

1Mb

0 412K 558K

566K

606K

632K

653K

656K

673K

702K

728K

758K

780K

806K

816K

818K

1021K

1024K

RBTree key

offset size

• The cache memory has limited size (4Mb by default)

• The cache is managed by LRU algorithm

Why you need LRU for the prefetch cache?

9

If you have read one part of the node, then there is a high
probability that you will soon read the remaining parts of
the node.

node 211 node 210 displacement

sequential read

456789

node 209

Partial cache hit

10

part of cache memory

0 412K 558K

566K

606K

632K

653K

656K

673K

702K

728K

758K

780K

806K

816K

818K

1021K

1024K

HDD

offset: 0; size: 420K offset: 600K; size: 130K

read request 1 read request 2

offset: 412K; size: 8K offset: 600K; size: 6K offset: 632K; size: 21K offset: 673K; size: 29K

PCache AIO write overview

11

•Drop all nodes intersecting with request

•Write-through

Rescheduling AIO requests

12

re
q

1
re

q
2

re
q

3

w
a
it

w
a
it

n
e

w

node1

node2

node3

many-to-many
What to do if the requested node

is in-flight?

offset;

size;

qiov;

node_list;

refcount;

…

key;

request_list;

refcount;

status;

readcount;

…

request node

PCache AIO request complete

13

refcount=0

request

complete!

refcount=0

node

death

request complete

1 node

complete

2 node

complete

N node

complete

1 request

unreference

2 request

unreference

N request

unreference

How to complete an request which expects other

requests ?

Read-ahead policy

14

• Original requests are not written to the cache and only serve to
update statistics

• Filtering of large requests helps to detect sequential read

• If part of the readahead is already in the cache then only the
missing pieces will be fetched from disk

req

N-4

req

N-3

req

N-2

req

N-1

req

N-5

req

N

current request

check readahead_size

do readahead

15

SSDSC2BW120A4 EXT4 QEMU 2.6.50 VirtIO

qcow2 Linux 4.4.0

Fedora-22 2SMP

2GB VM

QEMU 2.6.50 VirtIO

qcow2 Linux 4.4.0

Fedora-22 2SMP 2GB

VM + dataplane

QEMU 2.6.50 VirtIO qcow2 Linux

4.4.0 Fedora-22 2SMP 2GB VM +

pcache

QEMU 2.6.50 VirtIO qcow2 Linux 4.4.0

Fedora-22 2SMP 2GB VM +

dataplane + pcache

↓ I/O Test #1 vs #1 vs #1 vs #2 vs #1 vs #2 vs #3

1 2G-read-seq-4K(01) 100% +10.7% +341% +298% +490% +433% +33.7%

2 2G-read-seq-4K(04)
100%

+5.0% +231% +215% +225% +210% -1.7%

3 2G-read-seq-4K(16) 100% +0.1% +80.3% +80.1% +72.1% +71.9% -4.6%

4 2G-read-seq-4K-AIO4(01)
100%

+43.3% +190% +102% +191% +103% +0.2%

5 2G-read-seq-4K-AIO4(04)
100%

+1.4% +79.0% +76.6% +78.2% +75.8% -0.4%

6 2G-read-seq-4K-AIO4(16)
100%

+0.6% +77.6% +76.5% +70.3% +69.3% -4.1%

7 2G-read-seq-4K-AIO32(01) 100% -7.8% -0.8% +7.6% +1.2% +9.7% +2.0%

8 2G-read-seq-4K-AIO32(04) 100% -4.4% +21.8% +27.4% +24.9% +30.7% +2.6%

9 2G-read-seq-4K-AIO32(16) 100% -3.0% +46.4% +50.8% +46.7% +51.1% +0.2%

10 2G-read-rnd-4K(01) 100% +1.1% +3.0% +1.9% +1.9% +0.9% -1.0%

11 2G-read-rnd-4K(04)
100%

+2.5% +0.4% -2.0% +1.7% -0.8% +1.3%

12 2G-read-rnd-4K(16)
100%

+7.1% +5.4% -1.6% +5.7% -1.3% +0.3%

13 2G-read-rnd-4K-AIO4(01)
100%

+1.2% -0.8% -1.9% +1.5% +0.3% +2.3%

14 2G-read-rnd-4K-AIO4(04)
100%

+2.4% +6.9% +4.3% +7.2% +4.7% +0.3%

15 2G-read-rnd-4K-AIO4(16)
100%

-0.5% +4.9% +5.4% +4.1% +4.6% -0.8%

16 2G-read-rnd-4K-AIO32(01)
100%

+1.4% +0.1% -1.3% +1.5% +0.1% +1.4%

17 2G-read-rnd-4K-AIO32(04)
100%

+2.9% +0.4% -2.5% +3.1% +0.1% +2.7%

18 2G-read-rnd-4K-AIO32(16)
100%

-4.6% -0.5% +4.3% +0.6% +5.4% +1.1%

Read directory

16

SSDSC2BW120A4 EXT4 QEMU 2.6.50

VirtIO qcow2

Linux 4.4.0

Fedora-22

2SMP 2GB VM

QEMU 2.6.50 VirtIO qcow2 Linux 4.4.0

Fedora-22 2SMP 2GB VM + pcache

↓ Test Scores Scores vs #1

1

dir_readdir

Testcase: create a directory and populate it with 10

subdirs and 10 files with max depth 3 once before

test. Total: there are 10^3 dirs and 10^3 files.:

All files are empty:

(1) open() root dir, then readdir() recursively,

close():

134 137

+1.9%

Qemu bench

17

4K AIO read requests (pcache)

18

chunk size

I\
O

 r
e
q
u
e
s
ts

For readahead_size = 64Kb, it was the expected result

4K AIO read requests (pcache + iothread)

19
chunk size

I\
O

 r
e
q

u
e
s
ts

iothread helped to merge a lot of requests

Conclusions

20

• PCache can optimize certain I/O patterns without
pessimizing others

• PCache implementation in the form of the driver filter is
unintrusive

• PCache is not universally useful, benchmark your
patterns before enabling

Questions?

21

