
Jobs & Unemployment

John Snow
Software Engineer, Red Hat
Block Layer, Virtualization Team
2016-08-25

In The New QEMU Economy



Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 20162

Acknowledgments
(Those that helped me when I was Job-less)

Thanks to:
● Jeff Cody — Block-jobs Czar
● Markus Armbruster — Resident QAPIbara
● Eric Blake — Full-time carelessness firewall
● Kevin Wolf — Block layer Bad Dude™
● Max Reitz – Assistant Bad Dude™
● Alberto Garcia – Preliminary Work



Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 20163

Overview
(99% accurate 30-minute jobs forecast)

QEMU 2.7 Jobs Report
● What are Jobs?
● Jobs in Today’s economy

Job Lifetime & Management
● Workflow
● User Interface & Management
● Events
● Lifetime
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Overview
(99% accurate 30-minute jobs forecast)

“Unemployment”
● Shortcomings
● Block specificity
● Lack of parallelism

Jobs Outlook
● Parallelism / Multijobs
● Expanded Jobs Layer
● Subsystems



QEMU 2.7 
Jobs Report

(Unemployment is low, but so is worker participation)
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What are jobs?
(A question also asked in future dystopian America)

Jobs are long-running QEMU tasks.
● User-visible, persistent objects
● User-manipulable

● Pause, resume, cancel, set-speed, etc.
● Created via QMP
● Manipulated/Queried via QMP
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What are jobs?
(A question also asked in future dystopian America)

● Inherently Asynchronous
● Async completion / failure
● Async notification via QMP events

● (Usually) self-terminating
● Used for:

● Tasks that will take a long time
● Tasks of indeterminate or non-finite length
● Ideal for storage tasks
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Jobs in today’s economy
(Jobs report: no new jobs added in 2.7 – eek!)

commit

mirror

stream

backup

There are four block jobs today:

(Though some have multiple interfaces and sub-types… we’ll get to that.)
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Job: block-commit
(I’m fully committed to these awful jokes.)

Block commit squashes layers of an image.
● Changes are written down to the base.
● Asynchronously commits changes into the base
● For more detailed information:

● Eric Blake @ KVM Forum 2015
“Backing Chain management in qemu and libvirt”

● Kashyap Chamarthy @ LinuxCon NA 2016
“A Practical Look at QEMU's Block Layer Primitives”
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Job: block-commit
(I’m fully committed to these awful jokes.)

top.qcow2 a.qcow2 b.qcow2 base.qcow2

Let’s take a sample qcow2 backing chain:

And let’s say we want to squash the top three layers into 
a unified “b.qcow2.”
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Job: block-commit
(I’m fully committed to these awful jokes.)

Via block-commit, we can asynchronously write 
everything down into b.qcow2.

top.qcow2 a.qcow2 b.qcow2 base.qcow2



Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201612

Job: block-commit
(I’m fully committed to these awful jokes.)

After data has been merged into b.qcow2, the formerly 
top layer(s) can be safely removed.

top.qcow2 a.qcow2 b.qcow2 base.qcow2
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Job: block-stream
(Not a waterfall of tiny cubes)

Block stream also squashes layers of an image.
● Changes are written up to the top/active layer.
● Asynchronously pulls changes up to the top.
● For more detailed information, again:

● Eric Blake @ KVM Forum 2015
“Backing Chain management in qemu and libvirt”

● Kashyap Chamarthy @ LinuxCon NA 2016
“A Practical Look at QEMU's Block Layer Primitives”
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Job: block-stream
(Not a waterfall of tiny cubes)

top.qcow2 a.qcow2 b.qcow2 base.qcow2

Let’s take the same sample qcow2 backing chain:

But this time, let’s squash the changes upwards into “a.qcow2.”
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Job: block-stream
(Not a waterfall of tiny cubes)

Similarly, we asynchronously copy data up into a top layer. 

top.qcow2 a.qcow2 b.qcow2 base.qcow2
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Job: block-stream
(Not a waterfall of tiny cubes)

And just like commit, we can safely remove the old layers.

top.qcow2 a.qcow2 b.qcow2 base.qcow2
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Job: block-mirror
(When you gaze into the block layer, the block layer gazes back)

Block mirror is at its heart a copy operation.
● Multiple sync modes:

● Full, top, none
● Two-phase copy process:

● Pre-synchronized, Post-synchronized
● Asynchronously handles backlog and new writes
● Can run indefinitely upon reaching parity
● More Info: Eric’s talk (2015), Kashyap / Max (2016)
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Job: block-mirror
(When you gaze into the block layer, the block layer gazes back)

top.qcow2

base.qcow2

/dev/sda

copy.qcow2

Simple sync=full case:
● Empty copy.qcow2 destination
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Job: block-mirror
(When you gaze into the block layer, the block layer gazes back)

top.qcow2

base.qcow2

/dev/sda

copy.qcow2

1) All new writes go to both top and copy.
2) All existing data from top and base get mirrored to copy.
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Job: block-mirror
(When you gaze into the block layer, the block layer gazes back)

top.qcow2

base.qcow2

/dev/sda

copy.qcow2

Parity reached:
● New writes are mirrored indefinitely
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Job: block-mirror
(When you gaze into the block layer, the block layer gazes back)

top.qcow2

base.qcow2

/dev/sda

copy.qcow2

Job told to finish:
● QEMU pivots to copy.qcow2 exclusively
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Job: block-backup
(Backup plan: rhombus-devel@nongnu.org ?)

Backup is similar to mirror, it is a copy operation.
● Uses the same sync modes as mirror

● (full, top, none)
● Does not include a sync phase
● Does not ‘pivot’ to the backup.
● Point-in-time: At job start
● Includes a bonus backup mode: Incremental

● See my KVM Forum 2015 talk for more details!
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Job: block-backup
(Backup plan: rhombus-devel@nongnu.org ?)

Simple case:
● Back up drive ‘sda’ to backup.qcow2

top.qcow2

base.qcow2

/dev/sda

backup.qcow2
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Job: block-backup
(Backup plan: rhombus-devel@nongnu.org ?)

Unlike block-mirror…
● Writes don’t get mirrored to the backup.

top.qcow2

base.qcow2

/dev/sda

backup.qcow2
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Job: block-backup
(Backup plan: rhombus-devel@nongnu.org ?)

When finished, there is no sync phase or pivot.

top.qcow2

base.qcow2

/dev/sda

backup.qcow2



JOB LIFETIME & 
MANAGEMENT

(AKA: Retirement Planning?)
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Jobs: Management
(MBA specializing in block-jobs)

Jobs are managed entirely via QMP.
● Creation
● Verification and Query
● Pause, Cancel, or Resume
● Complete a ‘ready’ job

● (i.e. block-mirror)
● Receive asynchronous event notifications

● docs/qmp-events.txt
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Jobs Workflow
(Charts to read while at the unemployment office)

Now that we know what they do, let’s see how/when:

deleted

busy canceled

completedready

create

paused
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Jobs: Creation
(The least political talk of ‘job creators’ ever given)

● There is no central block-job-create command
● Each job is created by its own ‘front-end’

● Jobs are automatically started after create
● Historically, Job “ID” is that of the related device

● i.e. no explicit ID given
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Jobs: Creation (Example)
(The least political talk of ‘job creators’ ever given)

● Jobs are created via QMP.

{ “return”: { } }{ “return”: { } }{ "execute": "drive-backup",
  "arguments": {
    "device": "sda",
    "target": "sda.qcow2",
    "format": "qcow2",
    "sync": "full",
    "mode": "existing"
} }

{ "execute": "drive-backup",
  "arguments": {
    "device": "sda",
    "target": "sda.qcow2",
    "format": "qcow2",
    "sync": "full",
    "mode": "existing"
} }
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Jobs: Events
(Nothing at all like a career fair)

Jobs report status via QMP events.
● BLOCK_JOB_CANCELLED

● (Yes, with two Ls, says the American)
● BLOCK_JOB_COMPLETED

● Not indicative of actual success
● BLOCK_JOB_ERROR
● BLOCK_JOB_READY
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Jobs: Querying
(Help Wanted: Seek Within)

{ "execute": "query-block-jobs", 
  "arguments": {} }
{ "execute": "query-block-jobs", 
  "arguments": {} }

{ "return": [ {
    "busy": true, 
    "type": "backup", 
    "len": 68719476736, 
    "paused": false, 
    "ready": false, 
    "io-status": "ok", 
    "offset": 26104299520, 
    "device": "sda", 
    "speed": 0
} ] }

{ "return": [ {
    "busy": true, 
    "type": "backup", 
    "len": 68719476736, 
    "paused": false, 
    "ready": false, 
    "io-status": "ok", 
    "offset": 26104299520, 
    "device": "sda", 
    "speed": 0
} ] }
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Jobs: Pausing
(I guess this would be a leave of absence?)

{ "execute": "block-job-pause", 
  "arguments": { "device": "sda" } }
{ "execute": "block-job-pause", 
  "arguments": { "device": "sda" } }

{ "return": [ {
    "busy": false, 
    "type": "backup", 
    "len": 68719476736, 
    "paused": true, 
    "ready": false, 
    "io-status": "ok", 
    "offset": 26104299520, 
    "device": "sda", 
    "speed": 0
} ] }

{ "return": [ {
    "busy": false, 
    "type": "backup", 
    "len": 68719476736, 
    "paused": true, 
    "ready": false, 
    "io-status": "ok", 
    "offset": 26104299520, 
    "device": "sda", 
    "speed": 0
} ] }

{ "return": {} }{ "return": {} }
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Jobs: Resuming
(select-all  mark as read)→

{ "execute": "block-job-resume", 
  "arguments": { "device": "sda" } }
{ "execute": "block-job-resume", 
  "arguments": { "device": "sda" } }

{ "return": [ {
    "busy": true, 
    "type": "backup", 
    "len": 68719476736, 
    "paused": false, 
    "ready": false, 
    "io-status": "ok", 
    "offset": 26104299520, 
    "device": "sda", 
    "speed": 0
} ] }

{ "return": [ {
    "busy": true, 
    "type": "backup", 
    "len": 68719476736, 
    "paused": false, 
    "ready": false, 
    "io-status": "ok", 
    "offset": 26104299520, 
    "device": "sda", 
    "speed": 0
} ] }

{ "return": {} }{ "return": {} }
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Jobs: Completion
(Nothing like a hard day’s work completed)

{ 'timestamp': {
    'seconds': 1471637374,
    'microseconds': 508344},
  'data': {
    'device': 'sda',
    'type': 'backup',
    'speed': 0,
    'len': 68719476736,
    'offset': 68719476736},
  'event': 'BLOCK_JOB_COMPLETED'
}

{ 'timestamp': {
    'seconds': 1471637374,
    'microseconds': 508344},
  'data': {
    'device': 'sda',
    'type': 'backup',
    'speed': 0,
    'len': 68719476736,
    'offset': 68719476736},
  'event': 'BLOCK_JOB_COMPLETED'
}

Jobs can either complete successfully, error out, or 
get canceled.
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Jobs: Completion
(Nothing like a hard day’s work completed)

Jobs can either complete successfully, error out, or 
get canceled.

{ "timestamp": { 
    "seconds": 1471637374,
    "microseconds": 683015 },
  "data": { 
    "device": "sda",
    "action": "report",
    "operation": "read" },
  "event": "BLOCK_JOB_ERROR"
}

{ "timestamp": { 
    "seconds": 1471637374,
    "microseconds": 683015 },
  "data": { 
    "device": "sda",
    "action": "report",
    "operation": "read" },
  "event": "BLOCK_JOB_ERROR"
}

{ "timestamp": { 
    "seconds": 1471637374,
    "microseconds": 683315 },
  "data": { 
    "speed": 0,
    "offset": 0,
    "len": 68719476736,
    "error": "Input/output error",
    "device": "sda",
    "type": "backup" },
  "event": "BLOCK_JOB_COMPLETED"
}

{ "timestamp": { 
    "seconds": 1471637374,
    "microseconds": 683315 },
  "data": { 
    "speed": 0,
    "offset": 0,
    "len": 68719476736,
    "error": "Input/output error",
    "device": "sda",
    "type": "backup" },
  "event": "BLOCK_JOB_COMPLETED"
}
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Jobs: Completion
(Nothing like a hard day’s work completed)

Jobs can either complete successfully, error out, or 
get canceled.

{ "timestamp": { 
    "seconds": 1447193702,
    "microseconds": 640163 },
  "data": { 
    "device": "sda",
    "type": "backup",
    "speed": 0,
    "len": 67108864,
    "offset": 16777216 },
  "event": "BLOCK_JOB_CANCELLED"
}

{ "timestamp": { 
    "seconds": 1447193702,
    "microseconds": 640163 },
  "data": { 
    "device": "sda",
    "type": "backup",
    "speed": 0,
    "len": 67108864,
    "offset": 16777216 },
  "event": "BLOCK_JOB_CANCELLED"
}
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Jobs: Manual Completion
(Not an advert for a technical copywriter)

Jobs that run indefinitely need to be told to complete 
(or cancel) when ready.

{ "timestamp": { 
    "seconds": 1471647044,
    "microseconds": 444237 },
  "data": { 
    "device": "sda",
    "type": "mirror",
    "speed": 0,
    "len": 67108864,
    "offset": 67108864 },
  "event": "BLOCK_JOB_READY"
}

{ "timestamp": { 
    "seconds": 1471647044,
    "microseconds": 444237 },
  "data": { 
    "device": "sda",
    "type": "mirror",
    "speed": 0,
    "len": 67108864,
    "offset": 67108864 },
  "event": "BLOCK_JOB_READY"
}

{ "execute": "block-job-
complete",
  "arguments": {
    "device": "sda"
  }
}

{ "execute": "block-job-
complete",
  "arguments": {
    "device": "sda"
  }
}

{ "return": {} }{ "return": {} }



Unemployment

(Shortcomings with Block Jobs)
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Shortcomings
(Okay, that was all fine and dandy, but… so?)

Jobs were implemented as block-specific primitives.
● All QMP commands are block-related:

● Query-block-jobs, block-job-pause, etc.
● Implemented in a block-centric way

● Code tied fairly closely to block layer
● Historically do not have unique IDs

● Tied to the ‘device’ instead
● Increasingly outdated paradigm
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Identification
(Papers, Please)

Block Jobs are currently* managed via device ID.
● Some jobs interact with more than one node/device
● Some jobs ‘pivot’ on their focal device
● Jobs currently only open blockers on one node

● May interact with/affect more
● Only one job allowed per device

● This is unsatisfactory for multiple read operations
● We’d like true multiple (block) job support
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Multijobs
(A very atypical pinball machine bonus)

● Jobs take more locks than they need.
● We want increased parallelism

● Nothing prohibits us from multiple RO jobs
● New Op Blockers will help in part

● More fine-grained
● But we need a re-factoring of the QAPI, too
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The Power of Co-routines
(Hey, what are you folks doing tomorrow?)

Jobs are a powerful user interface to coroutines.
● Useful interface and user abstraction for tasks
● This interface currently limited to block layer...

● But it could be separated and used more broadly!
● If Jobs need reworking for multi-jobs anyway…

● ...Let’s bring this power to all of QEMU.
● Jeff Cody’s talk tomorrow @ 11:15AM EDT

● QEMU Coroutines, Exposed”



Jobs Forecast

(I’m sorry, this pun is getting really strained)



Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201645

Jobs for everyone?
(I’m not running for office, I promise)

Since we need to make a new API for multijobs…
● Let’s bring co-routines and jobs to all of QEMU.
● Better abstraction for tasks

● More generic
● Simpler to manage, query

● Brings a powerful interface to QEMU
● Already well understood
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Block Jobs  Jobs→
(I think I have writer’s block)

NOW

block-job-cancel

block-job-pause

block-job-resume

block-job-complete

query-block-jobs

block-job-set-speed

2.0

job-cancel

job-pause

job-resume

job-complete

query-jobs

job-set-option

→
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Block Jobs  Jobs→
(I think I have writer’s block)

NOW

BLOCK_JOB_CANCELLED

BLOCK_JOB_COMPLETED

BLOCK_JOB_ERROR

BLOCK_JOB_READY

-

2.0

JOB_CANCELLED

JOB_COMPLETED

JOB_ERROR

JOB_READY

JOB_STARTED ?

→
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Block Jobs  Block Jobs→
(Obligatory Compatibility Slide)

● Legacy interface will remain
● Can be used by e.g. older libvirt
● Returns errors after any new API usage
● As strict over 2.7-era usage (no multijobs)

● Block Jobs implemented as ‘subclass’ of Jobs
● Provides example for future subsystems...
● Existing job-specific creation interfaces remain
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Jobs: Subsystems
(Not transit authority jobs)

● Block-jobs are now a ‘subsystem’
● Capacity to expand query/set-options

● e.g. set-speed if not applicable to general case
● Other subsystems may wish to utilize coroutines

● At the risk of getting volunteered, Migration?
● Colo? Debugging? Statistics? Fault Tolerance?



Requests?



Questions?



THANK YOU!THANK YOU!

More questions?
jsnow@redhat.com

cc: qemu-devel@nongnu.org
cc: qemu-block@nongnu.org

mailto:jsnow@redhat.com
mailto:qemu-devel@nongnu.org
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