
Jobs & Unemployment

John Snow
Software Engineer, Red Hat
Block Layer, Virtualization Team
2016-08-25

In The New QEMU Economy

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 20162

Acknowledgments
(Those that helped me when I was Job-less)

Thanks to:
● Jeff Cody — Block-jobs Czar
● Markus Armbruster — Resident QAPIbara
● Eric Blake — Full-time carelessness firewall
● Kevin Wolf — Block layer Bad Dude™
● Max Reitz – Assistant Bad Dude™
● Alberto Garcia – Preliminary Work

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 20163

Overview
(99% accurate 30-minute jobs forecast)

QEMU 2.7 Jobs Report
● What are Jobs?
● Jobs in Today’s economy

Job Lifetime & Management
● Workflow
● User Interface & Management
● Events
● Lifetime

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 20164

Overview
(99% accurate 30-minute jobs forecast)

“Unemployment”
● Shortcomings
● Block specificity
● Lack of parallelism

Jobs Outlook
● Parallelism / Multijobs
● Expanded Jobs Layer
● Subsystems

QEMU 2.7
Jobs Report

(Unemployment is low, but so is worker participation)

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 20166

What are jobs?
(A question also asked in future dystopian America)

Jobs are long-running QEMU tasks.
● User-visible, persistent objects
● User-manipulable

● Pause, resume, cancel, set-speed, etc.
● Created via QMP
● Manipulated/Queried via QMP

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 20167

What are jobs?
(A question also asked in future dystopian America)

● Inherently Asynchronous
● Async completion / failure
● Async notification via QMP events

● (Usually) self-terminating
● Used for:

● Tasks that will take a long time
● Tasks of indeterminate or non-finite length
● Ideal for storage tasks

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 20168

Jobs in today’s economy
(Jobs report: no new jobs added in 2.7 – eek!)

commit

mirror

stream

backup

There are four block jobs today:

(Though some have multiple interfaces and sub-types… we’ll get to that.)

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 20169

Job: block-commit
(I’m fully committed to these awful jokes.)

Block commit squashes layers of an image.
● Changes are written down to the base.
● Asynchronously commits changes into the base
● For more detailed information:

● Eric Blake @ KVM Forum 2015
“Backing Chain management in qemu and libvirt”

● Kashyap Chamarthy @ LinuxCon NA 2016
“A Practical Look at QEMU's Block Layer Primitives”

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201610

Job: block-commit
(I’m fully committed to these awful jokes.)

top.qcow2 a.qcow2 b.qcow2 base.qcow2

Let’s take a sample qcow2 backing chain:

And let’s say we want to squash the top three layers into
a unified “b.qcow2.”

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201611

Job: block-commit
(I’m fully committed to these awful jokes.)

Via block-commit, we can asynchronously write
everything down into b.qcow2.

top.qcow2 a.qcow2 b.qcow2 base.qcow2

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201612

Job: block-commit
(I’m fully committed to these awful jokes.)

After data has been merged into b.qcow2, the formerly
top layer(s) can be safely removed.

top.qcow2 a.qcow2 b.qcow2 base.qcow2

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201613

Job: block-stream
(Not a waterfall of tiny cubes)

Block stream also squashes layers of an image.
● Changes are written up to the top/active layer.
● Asynchronously pulls changes up to the top.
● For more detailed information, again:

● Eric Blake @ KVM Forum 2015
“Backing Chain management in qemu and libvirt”

● Kashyap Chamarthy @ LinuxCon NA 2016
“A Practical Look at QEMU's Block Layer Primitives”

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201614

Job: block-stream
(Not a waterfall of tiny cubes)

top.qcow2 a.qcow2 b.qcow2 base.qcow2

Let’s take the same sample qcow2 backing chain:

But this time, let’s squash the changes upwards into “a.qcow2.”

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201615

Job: block-stream
(Not a waterfall of tiny cubes)

Similarly, we asynchronously copy data up into a top layer.

top.qcow2 a.qcow2 b.qcow2 base.qcow2

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201616

Job: block-stream
(Not a waterfall of tiny cubes)

And just like commit, we can safely remove the old layers.

top.qcow2 a.qcow2 b.qcow2 base.qcow2

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201617

Job: block-mirror
(When you gaze into the block layer, the block layer gazes back)

Block mirror is at its heart a copy operation.
● Multiple sync modes:

● Full, top, none
● Two-phase copy process:

● Pre-synchronized, Post-synchronized
● Asynchronously handles backlog and new writes
● Can run indefinitely upon reaching parity
● More Info: Eric’s talk (2015), Kashyap / Max (2016)

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201618

Job: block-mirror
(When you gaze into the block layer, the block layer gazes back)

top.qcow2

base.qcow2

/dev/sda

copy.qcow2

Simple sync=full case:
● Empty copy.qcow2 destination

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201619

Job: block-mirror
(When you gaze into the block layer, the block layer gazes back)

top.qcow2

base.qcow2

/dev/sda

copy.qcow2

1) All new writes go to both top and copy.
2) All existing data from top and base get mirrored to copy.

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201620

Job: block-mirror
(When you gaze into the block layer, the block layer gazes back)

top.qcow2

base.qcow2

/dev/sda

copy.qcow2

Parity reached:
● New writes are mirrored indefinitely

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201621

Job: block-mirror
(When you gaze into the block layer, the block layer gazes back)

top.qcow2

base.qcow2

/dev/sda

copy.qcow2

Job told to finish:
● QEMU pivots to copy.qcow2 exclusively

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201622

Job: block-backup
(Backup plan: rhombus-devel@nongnu.org ?)

Backup is similar to mirror, it is a copy operation.
● Uses the same sync modes as mirror

● (full, top, none)
● Does not include a sync phase
● Does not ‘pivot’ to the backup.
● Point-in-time: At job start
● Includes a bonus backup mode: Incremental

● See my KVM Forum 2015 talk for more details!

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201623

Job: block-backup
(Backup plan: rhombus-devel@nongnu.org ?)

Simple case:
● Back up drive ‘sda’ to backup.qcow2

top.qcow2

base.qcow2

/dev/sda

backup.qcow2

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201624

Job: block-backup
(Backup plan: rhombus-devel@nongnu.org ?)

Unlike block-mirror…
● Writes don’t get mirrored to the backup.

top.qcow2

base.qcow2

/dev/sda

backup.qcow2

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201625

Job: block-backup
(Backup plan: rhombus-devel@nongnu.org ?)

When finished, there is no sync phase or pivot.

top.qcow2

base.qcow2

/dev/sda

backup.qcow2

JOB LIFETIME &
MANAGEMENT

(AKA: Retirement Planning?)

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201627

Jobs: Management
(MBA specializing in block-jobs)

Jobs are managed entirely via QMP.
● Creation
● Verification and Query
● Pause, Cancel, or Resume
● Complete a ‘ready’ job

● (i.e. block-mirror)
● Receive asynchronous event notifications

● docs/qmp-events.txt

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201628

Jobs Workflow
(Charts to read while at the unemployment office)

Now that we know what they do, let’s see how/when:

deleted

busy canceled

completedready

create

paused

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201629

Jobs: Creation
(The least political talk of ‘job creators’ ever given)

● There is no central block-job-create command
● Each job is created by its own ‘front-end’

● Jobs are automatically started after create
● Historically, Job “ID” is that of the related device

● i.e. no explicit ID given

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201630

Jobs: Creation (Example)
(The least political talk of ‘job creators’ ever given)

● Jobs are created via QMP.

{ “return”: { } }{ “return”: { } }{ "execute": "drive-backup",
 "arguments": {
 "device": "sda",
 "target": "sda.qcow2",
 "format": "qcow2",
 "sync": "full",
 "mode": "existing"
} }

{ "execute": "drive-backup",
 "arguments": {
 "device": "sda",
 "target": "sda.qcow2",
 "format": "qcow2",
 "sync": "full",
 "mode": "existing"
} }

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201631

Jobs: Events
(Nothing at all like a career fair)

Jobs report status via QMP events.
● BLOCK_JOB_CANCELLED

● (Yes, with two Ls, says the American)
● BLOCK_JOB_COMPLETED

● Not indicative of actual success
● BLOCK_JOB_ERROR
● BLOCK_JOB_READY

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201632

Jobs: Querying
(Help Wanted: Seek Within)

{ "execute": "query-block-jobs",
 "arguments": {} }
{ "execute": "query-block-jobs",
 "arguments": {} }

{ "return": [{
 "busy": true,
 "type": "backup",
 "len": 68719476736,
 "paused": false,
 "ready": false,
 "io-status": "ok",
 "offset": 26104299520,
 "device": "sda",
 "speed": 0
}] }

{ "return": [{
 "busy": true,
 "type": "backup",
 "len": 68719476736,
 "paused": false,
 "ready": false,
 "io-status": "ok",
 "offset": 26104299520,
 "device": "sda",
 "speed": 0
}] }

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201633

Jobs: Pausing
(I guess this would be a leave of absence?)

{ "execute": "block-job-pause",
 "arguments": { "device": "sda" } }
{ "execute": "block-job-pause",
 "arguments": { "device": "sda" } }

{ "return": [{
 "busy": false,
 "type": "backup",
 "len": 68719476736,
 "paused": true,
 "ready": false,
 "io-status": "ok",
 "offset": 26104299520,
 "device": "sda",
 "speed": 0
}] }

{ "return": [{
 "busy": false,
 "type": "backup",
 "len": 68719476736,
 "paused": true,
 "ready": false,
 "io-status": "ok",
 "offset": 26104299520,
 "device": "sda",
 "speed": 0
}] }

{ "return": {} }{ "return": {} }

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201634

Jobs: Resuming
(select-all mark as read)→

{ "execute": "block-job-resume",
 "arguments": { "device": "sda" } }
{ "execute": "block-job-resume",
 "arguments": { "device": "sda" } }

{ "return": [{
 "busy": true,
 "type": "backup",
 "len": 68719476736,
 "paused": false,
 "ready": false,
 "io-status": "ok",
 "offset": 26104299520,
 "device": "sda",
 "speed": 0
}] }

{ "return": [{
 "busy": true,
 "type": "backup",
 "len": 68719476736,
 "paused": false,
 "ready": false,
 "io-status": "ok",
 "offset": 26104299520,
 "device": "sda",
 "speed": 0
}] }

{ "return": {} }{ "return": {} }

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201635

Jobs: Completion
(Nothing like a hard day’s work completed)

{ 'timestamp': {
 'seconds': 1471637374,
 'microseconds': 508344},
 'data': {
 'device': 'sda',
 'type': 'backup',
 'speed': 0,
 'len': 68719476736,
 'offset': 68719476736},
 'event': 'BLOCK_JOB_COMPLETED'
}

{ 'timestamp': {
 'seconds': 1471637374,
 'microseconds': 508344},
 'data': {
 'device': 'sda',
 'type': 'backup',
 'speed': 0,
 'len': 68719476736,
 'offset': 68719476736},
 'event': 'BLOCK_JOB_COMPLETED'
}

Jobs can either complete successfully, error out, or
get canceled.

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201636

Jobs: Completion
(Nothing like a hard day’s work completed)

Jobs can either complete successfully, error out, or
get canceled.

{ "timestamp": {
 "seconds": 1471637374,
 "microseconds": 683015 },
 "data": {
 "device": "sda",
 "action": "report",
 "operation": "read" },
 "event": "BLOCK_JOB_ERROR"
}

{ "timestamp": {
 "seconds": 1471637374,
 "microseconds": 683015 },
 "data": {
 "device": "sda",
 "action": "report",
 "operation": "read" },
 "event": "BLOCK_JOB_ERROR"
}

{ "timestamp": {
 "seconds": 1471637374,
 "microseconds": 683315 },
 "data": {
 "speed": 0,
 "offset": 0,
 "len": 68719476736,
 "error": "Input/output error",
 "device": "sda",
 "type": "backup" },
 "event": "BLOCK_JOB_COMPLETED"
}

{ "timestamp": {
 "seconds": 1471637374,
 "microseconds": 683315 },
 "data": {
 "speed": 0,
 "offset": 0,
 "len": 68719476736,
 "error": "Input/output error",
 "device": "sda",
 "type": "backup" },
 "event": "BLOCK_JOB_COMPLETED"
}

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201637

Jobs: Completion
(Nothing like a hard day’s work completed)

Jobs can either complete successfully, error out, or
get canceled.

{ "timestamp": {
 "seconds": 1447193702,
 "microseconds": 640163 },
 "data": {
 "device": "sda",
 "type": "backup",
 "speed": 0,
 "len": 67108864,
 "offset": 16777216 },
 "event": "BLOCK_JOB_CANCELLED"
}

{ "timestamp": {
 "seconds": 1447193702,
 "microseconds": 640163 },
 "data": {
 "device": "sda",
 "type": "backup",
 "speed": 0,
 "len": 67108864,
 "offset": 16777216 },
 "event": "BLOCK_JOB_CANCELLED"
}

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201638

Jobs: Manual Completion
(Not an advert for a technical copywriter)

Jobs that run indefinitely need to be told to complete
(or cancel) when ready.

{ "timestamp": {
 "seconds": 1471647044,
 "microseconds": 444237 },
 "data": {
 "device": "sda",
 "type": "mirror",
 "speed": 0,
 "len": 67108864,
 "offset": 67108864 },
 "event": "BLOCK_JOB_READY"
}

{ "timestamp": {
 "seconds": 1471647044,
 "microseconds": 444237 },
 "data": {
 "device": "sda",
 "type": "mirror",
 "speed": 0,
 "len": 67108864,
 "offset": 67108864 },
 "event": "BLOCK_JOB_READY"
}

{ "execute": "block-job-
complete",
 "arguments": {
 "device": "sda"
 }
}

{ "execute": "block-job-
complete",
 "arguments": {
 "device": "sda"
 }
}

{ "return": {} }{ "return": {} }

Unemployment

(Shortcomings with Block Jobs)

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201640

Shortcomings
(Okay, that was all fine and dandy, but… so?)

Jobs were implemented as block-specific primitives.
● All QMP commands are block-related:

● Query-block-jobs, block-job-pause, etc.
● Implemented in a block-centric way

● Code tied fairly closely to block layer
● Historically do not have unique IDs

● Tied to the ‘device’ instead
● Increasingly outdated paradigm

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201641

Identification
(Papers, Please)

Block Jobs are currently* managed via device ID.
● Some jobs interact with more than one node/device
● Some jobs ‘pivot’ on their focal device
● Jobs currently only open blockers on one node

● May interact with/affect more
● Only one job allowed per device

● This is unsatisfactory for multiple read operations
● We’d like true multiple (block) job support

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201642

Multijobs
(A very atypical pinball machine bonus)

● Jobs take more locks than they need.
● We want increased parallelism

● Nothing prohibits us from multiple RO jobs
● New Op Blockers will help in part

● More fine-grained
● But we need a re-factoring of the QAPI, too

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201643

The Power of Co-routines
(Hey, what are you folks doing tomorrow?)

Jobs are a powerful user interface to coroutines.
● Useful interface and user abstraction for tasks
● This interface currently limited to block layer...

● But it could be separated and used more broadly!
● If Jobs need reworking for multi-jobs anyway…

● ...Let’s bring this power to all of QEMU.
● Jeff Cody’s talk tomorrow @ 11:15AM EDT

● QEMU Coroutines, Exposed”

Jobs Forecast

(I’m sorry, this pun is getting really strained)

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201645

Jobs for everyone?
(I’m not running for office, I promise)

Since we need to make a new API for multijobs…
● Let’s bring co-routines and jobs to all of QEMU.
● Better abstraction for tasks

● More generic
● Simpler to manage, query

● Brings a powerful interface to QEMU
● Already well understood

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201646

Block Jobs Jobs→
(I think I have writer’s block)

NOW

block-job-cancel

block-job-pause

block-job-resume

block-job-complete

query-block-jobs

block-job-set-speed

2.0

job-cancel

job-pause

job-resume

job-complete

query-jobs

job-set-option

→

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201647

Block Jobs Jobs→
(I think I have writer’s block)

NOW

BLOCK_JOB_CANCELLED

BLOCK_JOB_COMPLETED

BLOCK_JOB_ERROR

BLOCK_JOB_READY

-

2.0

JOB_CANCELLED

JOB_COMPLETED

JOB_ERROR

JOB_READY

JOB_STARTED ?

→

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201648

Block Jobs Block Jobs→
(Obligatory Compatibility Slide)

● Legacy interface will remain
● Can be used by e.g. older libvirt
● Returns errors after any new API usage
● As strict over 2.7-era usage (no multijobs)

● Block Jobs implemented as ‘subclass’ of Jobs
● Provides example for future subsystems...
● Existing job-specific creation interfaces remain

Jobs & Unemployment in the new QEMU economy - John Snow; KVM Forum 201649

Jobs: Subsystems
(Not transit authority jobs)

● Block-jobs are now a ‘subsystem’
● Capacity to expand query/set-options

● e.g. set-speed if not applicable to general case
● Other subsystems may wish to utilize coroutines

● At the risk of getting volunteered, Migration?
● Colo? Debugging? Statistics? Fault Tolerance?

Requests?

Questions?

THANK YOU!THANK YOU!

More questions?
jsnow@redhat.com

cc: qemu-devel@nongnu.org
cc: qemu-block@nongnu.org

mailto:jsnow@redhat.com
mailto:qemu-devel@nongnu.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

