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What's this about?

● s390 (aka z Systems®) was the second architecture to implement 
KVM

● First with a custom userspace (kuli), then with qemu
● KVM on s390 exploits some neat architecture features...
● ...but also had to deal with some decisions that sounded good at 

the time...
● ...and some rather odd things that are different from everybody 

else



Let's get started

SIE – Start Interpretive Execution



Let's get started

● SIE uses per-vcpu control blocks in host memory
● ...this is nice for nested virtualization

● Satellite control blocks for some assists
● Intercept controls to enable manual interpretation
● Cool feature: ibc to fence back to a previous machine generation
● Intercept requests to get a vcpu out of the SIE

● Headscratcher: We can request exit for stop, I/O and external – 
but not for machine checks

● Various SIE exits: instruction, program interrupt, idle...
● ...but mostly mapped to the same exit code in KVM



Let's get started

● (Nearly) everything used to be mapped to a single SIE exit reason
● Drawbacks: we need to fetch state, as we don't know what we 

need to handle the intercept
● Instruction intercepts, wait states or program checks all need 

different status
● New 'specialist' exit codes (for handling of tsch, stsi, …)
● ...but a far cry from the variety of exit reasons on other 

architectures



Channels and paths and programs



Channels and paths and programs
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Channels and paths and programs
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Channels and paths and programs
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Channels and paths and programs

● stsch, msch, tsch – deal with device descriptions
● ssch, rsch, hsch, csch, xsch – deal with channel programs
● chsc – deal with a whole lot of things
● Neat features:

● All I/O instructions are mandatory intercepts
● Common set of architectural descriptions for all devices
● All I/O devices can describe themselves



Channels and paths and programs

● virtio – the easy case
● Fully virtual channel subsystem
● Channel paths do nothing

● Passthrough (vfio) and emulation is more complicated
● Need 'real' channel paths
● Some refactoring to accommodate non-virtio devices
● Vfio-ccw would be a talk in itself



It's PCI, but not as you know it

● PCI is a relative newcomer to the s390
● Only certain cards supported (RoCE, Flash, Compression)
● Needed to fit with existing paradigms
● No MMIO!
● Various instructions for reading/writing memory
● Integration into existing I/O infrastructure (adapter interrupts, 

channel-subsystem machine checks)
● ...and NO topology information!



It's PCI, but not as you know it

You want You use You get

All PCI functions and their 
configuration

CLP List PCI Functions and 
CLP Query PCI Function

List of functions with FH, 
FID, UID, BARs and DMA 
values – NO 
bus/slot/function topology!

Read/write PCI config space PCI LOAD and PCI STORE Access to the config space – 
via privileged instructions!

MSI interrupts Adapter interrupts and 
indicators

Message encoded with 
function index and indicator 
offset

Hot(un)plug notifications Machine-check notified 
events

Information extracted via a 
channel-subsystem call – but 
it is still PCI-specific 
information



It's PCI, but not as you know it

● Linux guest side integration worked quite well, but...
● ...host side modelling in qemu was not that easy
● Challenge: Reconcile qemu's topology-based modelling with 

zPCI's information
● Solution: Build a 'fake' topology, add satellite zpci devices to store 

s390-specific information (fid, uid)



It's PCI, but not as you know it

Quack

Quack



The changing ways of SIGP



The changing ways of SIGP

● SIGP – Signal Processor
● First implementation: partly in the kernel, partly in userspace

● This did not play well with keeping cpu state in qemu...
● ...and was racy between SIGPs

● Moved to userspace, guarded by a capability
● Privileged program exceptions still handled in the kernel
● Exception: 'fast' SIGPs which also need access to kernel state
● But we have to keep the old code around...

● Neat architecture feature: SIGP interpretation
● For a subset of SIGP calls, we can let the SIE handle it
● Exitless signalling of other vCPUs → win



The call that wants to be a processor

● SCLP – service-call logical processor
● Takes on many tasks performed by a PC's BIOS/UEFI
● ...but it is a well-specified interface
● In practice, we emulate it as a simple call

● Send a control block (SCCB), get an (external) interrupt on 
completion

● Supported features vary with the machine generation



The call that wants to be a processor

● Provide information about the machine
● Number of cpus, amount of memory, …
● ...and a list of facilities that is not completely distinct from cpu 

facilities
● Allow to dynamically change the machine's current configuration

● Activate standby cpus, deactivate PCI functions, ...
● Implement a console

● VT-220 compatible or line mode
● All of this is best implemented in userspace
● qemu models this as a device hierarchy



Let's talk about memory
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Let's talk about memory

● We need host kernel support to read/write memory in a correct 
way

● Reasons:
● IPTE lock (for DAT)

● To synchronize against page table changes by the SIE
● Contained in SIE control block

● Possible storage key operations
● Solution: introduce an IOCTL (KVM_S390_MEM_OP)



Let's talk about memory

MEM_OP srcu lock access_guest

● Get ACSE
● Get IPTE lock
● Perform DAT

kvm_read_guest
kvm_write_guest

● Release IPTE lock
srcu unlock

Note:
● Program checks may happen
● Key protection currently not implemented

Check arch/s390/kvm/gaccess.c for the gory details



Thank you!
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