
QEMU	Support	for	the	RISC-V	
Instruction	Set	Architecture

Sagar	Karandikar
sagark@eecs.berkeley.edu

KVM	Forum	2016

https://github.com/riscv/riscv-qemu

Outline

• Why	RISC-V?
• Benefits	of	an	Open	ISA
• RISC-V	ISA	Basics
• Virtualization	Support
• QEMU	RISC-V	Target	Support
• Work	in	Progress/TODOs	for	Upstreaming/Future	Work

ISAs	don’t	matter

• Most	of	the	performance	and	energy	of	running	software	on	a	computer	is	
due	to:
• Algorithms
• Application	code
• Compilers
• OS/Runtimes
• ISA
• Microarchitecture	(core	and	memory	hierarchy)
• Circuit	design
• Physical	design
• Fabrication	process

+	In	a	system,	there	are	also	displays,	radios,	DC/DC	converters,	sensors,	
actuators…

Why	Instruction	Set	Architecture	Matters

• Why	can’t	Intel	sell	mobile	chips?
• 99%+	of	mobile	phones/tablets	based	on	ARM	v7/v8	ISA

• Why	can’t	ARM	partners	sell	servers?
• 99%+	of	laptops/desktops/servers	based	on	AMD64	ISA	(over	95%+	built	by	
Intel)

• How	can	IBM	still	sell	mainframes?
• IBM	360,	oldest	surviving	ISA	(50+	years)

ISA	is	the	most	important	interface	in	a	computer	system
where	software	meets	hardware

Why	so	many	ISAs	on	an	SoC?

• Applications	processor	(usually	ARM)
• Graphics	processors
• Image	processors
• Radio	DSPs
• Audio	DSPs
• Security	processors
• Power-management	processor
• ….
• Apps	processor	ISA	(e.g.	ARM)	too	large	for	most	accelerators
• IP	bought	from	different	places,	each	proprietary	ISA
• Home-grown	ISA	cores
• Over	a	dozen	ISAs	on	some	SoCs	– each	with	unique	software	stack

NVIDIA	Tegra	SoC

Do	we	need	all	these	different	ISAs?

Must	they	be	proprietary?

What	if	there	were	one	free	and	open	ISA	
everyone	could	use	for	everything?

ISAs	should	be	Free	and	Open

• While	ISAs	may	be	proprietary	for	historical	or	business	reasons,	
there	is	no	good	technical	reason	for	the	lack	of	free,	open	ISAs
• It’s	not	an	error	of	omission
• Nor	is	it	because	the	companies	do	most	of	the	software	development
• Neither	do	companies	exclusively	have	the	experience	needed	to	design	a	
competent	ISA
• Nor	are	the	most	popular	ISAs	wonderful	ISAs
• Neither	can	only	companies	verify	ISA	compatibility
• Finally,	proprietary	ISAs	are	not	guaranteed	to	last

Benefits	of	a	Viable	Free	and	Open	ISA

• Greater	innovation	via	free-market	competition from	many	core	
designers,	closed-source	and	open-source
• Shared	open	core	designs,	shorter	time	to	market,	lower	cost	from	
reuse,	fewer	errors	given	more	eyeballs	
• Processors	becoming	affordable	for	more	devices,	which	would	help	
expand	the	Internet	of	Things	(IoTs),	which	could	cost	as	little	as	$1
• Software	stacks	survive	for	long	time upgrade	software	on	systems	
embedded	in	concrete	50	years	ago
• Make	architecture	research	and	education	more	real with	fully	open	
hardware	and	software	stacks

RISC-V	Origins

• In	2010,	after	many	years	and	many	projects	using	MIPS,	SPARC,	and	
x86	as	basis	of	research,	it	was	time	for	the	Computer	Science	team	at	
UC	Berkeley	to	look	at	what	ISAs	to	use	for	their	next	set	of	projects
• Obvious	choices:	x86	and	ARM
• x86	impossible	– too	complex,	IP	issues

Intel	x86	“AAA”	Instruction

• ASCII	Adjust	After	Addition
• AL	register	is	default	source	and	destination
• If	the	low	nibble	is	>	9	decimal,	or	the	auxiliary	carry	flag	AF	=	1,	then
• Add	6	to	the	low	nibble	of	AL	and	discard	overflow
• Increment	high	byte	of	AL
• Set	CF	and	AF

• Else
• CF	=	AF	=	0

• A	single-byte	instruction

RISC-V	Origins

• In	2010,	after	many	years	and	many	projects	using	MIPS,	SPARC,	and	
x86	as	basis	of	research,	it	was	time	for	the	Computer	Science	team	at	
UC	Berkeley	to	look	at	what	ISAs	to	use	for	their	next	set	of	projects
• Obvious	choices:	x86	and	ARM
• x86	impossible	– too	complex,	IP	issues
• ARM	mostly	impossible	– complex,	IP	issues

• UC	Berkeley	started	a	“3-month	project”	during	summer	of	2010	to	
develop	their	own	clean-slate	ISA
• Andrew	Waterman,	Yunsup	Lee,	Dave	Patterson,	Krste	Asanovic	principal	
designers

RISC-V	Background	(cont’d)

• Four	years	later,	in	May	of	2014,	UC	Berkeley	released	frozen	base	
user	spec
• Many	chip	tapeouts	and	several	research	publications	along	the	way

• The	name	RISC-V	(pronounced	risk-five),	was	chosen	to	represent	the	
fifth	major	RISC	ISA	design	effort	at	UC	Berkeley
• RISC-I,	RISC-II,	SOAR,	and	SPUR	were	the	first	four	with	the	original	RISC-I	
publications	dating	back	to	1981

• In	August	2015,	articles	of	incorporation	were	filed	to	create	a	non-
profit	RISC-V	Foundation	to	govern	the	ISA

RISC-V	is	NOT	an	Open-Source	Processor

• RISC-V	is	an	ISA	specification	– NOT	an	open-source	processor	core
• Most	of	the	cost	of	chip	design is	in	software,	so	we	want	to	make	
sure	software	can	be	reused	across	many	chip	designs
• The	Foundation	will	encourage	both	open-source	and	proprietary	
implementations	of	the	RISC-V	ISA	specification

UC	Berkeley	RISC-V	Cores:
Raven-1 Raven-2

Raven-3

Raven-4

EOS14

EOS16

EOS18

EOS20

2011 2012 2013 2014 2015

May Apr Aug Feb Jul Sep Mar Nov Mar

EOS:	IBM	45nm	SOI
Raven:	ST	28nm	FDSOI
Hurricane:	ST	28nm	FDSOI
SWERVE:	TSMC	28nm

SWERVE

EOS22
EOS24

1GHz
50+	DP	GFLOPS/W

1.65GHz
14	DP	GFLOPS/W

Hurricane-1

2016

Industrial	Support	– Platinum	Founding	
Members

Industrial	Support	– Gold,	Silver,	Auditor	
Founding	Members

Rumble	
Development

The	RISC-V	ISA

• RV32,	RV64,	RV128	variants	for	32b,	64b,	128b	address	spaces
defined
• Base	ISA	only	<50	integer	instructions,	but	supports	compiler,	linker,	
OS,	etc.
• Extensions	provide	full	general-purpose	ISA,	including	IEEE-754/2008	
floating-point
• Comparable	ISA-level	metrics	to	other	RISCs
• Designed	for	extension,	customization
• Twelve	64-bit	silicon	prototype	implementations	completed	at	
Berkeley	so	far	(45nm,	28nm)

RISC-V	Standard	Base	ISA	Details

• 32-bit,	fixed-width,	naturally	aligned	instructions
• 31	integer	registers	x1-x31,	plus	x0	zero	register
• rd/rs1/rs2	in	fixed	location,	no	implicit	registers
• Immediate	field	(instr[31])	always	sign-extended
• Floating-point	adds	f0-f31	registers	plus	FP	CSR,	also	fused	mul-add	four-register	
format
• Designed	to	support	PIC	and	dynamic	linking

RV64G	Definition

• G	=	I,	M,	A,	F,	D
• I = Base	Integer	ISA
• M = Standard	Integer	Multiplication/Division	Extension
• A = Standard	Atomics	Extension
• F = Standard	Single-precision	Floating-point	extension
• D = Standard	Double-precision	floating-point	extension

• This	is	the	standard,	general	purpose	version	of	the	ISA,	what	is	
implemented	in	QEMU

RISC-V	Privileged	Specification

• Four	Privilege	Modes:	User,	Supervisor,	Hypervisor,	Machine
• Machine	Mode	required
• Common:	Provide	M,	S,	U	for	running	Unix-like	OSes	(QEMU	does	this)
• Virtual	Memory	Architecture	designed	to	support	current	Unix-like	
operating	systems
• Sv39	(RV64)
• Demand-paged	39-bit	virtual-address	spaces
• 3-level	page	table
• 4	KiB	pages,	2	MiB	megapages,	1	GiB	gigapages

• Also	Sv32	(RV32)	and	Sv48,	Sv57,	Sv64	(RV64)

RISC-V	Virtualization

• ISA	designed	with	virtualization	in-mind	from	the	beginning,	even	
when	only	using	U	+	S	+	M	modes
• “The	privileged	architecture	is	designed	to	simplify	the	use	of	classic	
virtualization	techniques,	where	a	guest	OS	is	run	at	user-level,	as	the	few	
privileged	instructions	can	be	easily	detected	and	trapped.”	– RISC-V	
Privileged	Architecture	v1.9	Manual

• Avoiding	Some	Classical	Virtualization	Pitfalls…

Handling	Sensitive,	but	Unprivileged	
Instructions
• In	x86,	for	the	original	VMware	– “Table	II	lists	the	[19]	instructions	of	
the	x86	architecture	that	unfortunately	violated	Popek	and	Goldberg’s	
rule	and	hence	made	the	x86	non-virtualizeable”1

• In	RISC-V,	no	“hidden”	privileged	state	reads/writes
• Small	set	of	privileged	instructions	that	can	modify	space	of	privileged	
state	(Control	Status	Registers,	or	CSRs)

1.	E.	Bugnion,	S.	Devine,	M.	Rosenblum,	J.	Sugerman,	and	E.	Y.	Wang.	2012.	Bringing	Virtualization	to	the	x86	Architecture	
with	the	Original	VMware	Workstation. ACM	Trans.	Comput.	Syst. 30,	4,	Article	12	(November	2012),	51	pages.

Tracking	Changes	in	Virtual	Machine	Memory

• In	x86,	for	the	original	VMware	– “…	privileged	hardware	registers	
contain	the	address	of	segment	descriptor	tables	and	page	tables	...	
but regular	load	and	store	instructions	can	access	these	structures	in	
memory.”1

• In	RISC-V,	still	use	regular	loads/stores	to	modify	memory	
management	state
• Privileged	SFENCE.VM instruction	required	by	spec.	after	modifying	
memory	management	state

1.	E.	Bugnion,	S.	Devine,	M.	Rosenblum,	J.	Sugerman,	and	E.	Y.	Wang.	2012.	Bringing	Virtualization	to	the	x86	Architecture	
with	the	Original	VMware	Workstation. ACM	Trans.	Comput.	Syst. 30,	4,	Article	12	(November	2012),	51	pages.

Virtualizing	Segmentation

• In	x86,	for	the	original	VMware	– Complicated	interactions	between	
segment	descriptor	tables	and	segment	registers,	with	visible	and	
hidden	fields.	Hidden	pieces	updated	by	instructions	or	faults.	Causes	
problems	with	extra	faults	introduced	by	a	VMM.1

• In	RISC-V,	no	x86-style	segmentation
• Limited	base-and-bounds	mode	with	2	“segments”
• Most	software	will	use	paging	instead

1.	E.	Bugnion,	S.	Devine,	M.	Rosenblum,	J.	Sugerman,	and	E.	Y.	Wang.	2012.	Bringing	Virtualization	to	the	x86	Architecture	
with	the	Original	VMware	Workstation. ACM	Trans.	Comput.	Syst. 30,	4,	Article	12	(November	2012),	51	pages.

RISC-V	Virtualization	Stacks

• Provide	clean	split	between	layers	of	the	software	stack
• Application	communicates	with	Application	Execution	Environment	(AEE)	via	
Application	Binary	Interface	(ABI)
• OS	communicates	via	Supervisor	Execution	Environment	(SEE)	via	System	Binary	
Interface	(SBI)
• Hypervisor	communicates	via	Hypervisor	Binary	Interface	(HBI)	to	Hypervisor	
Execution	Environment	(HEE)
• All	levels	of	the	ISA	designed	to	support	virtualization

2 1.1draft: Volume II: RISC-V Privileged Architectures

Application
ABI
AEE

Application
ABI

OS
SBI
SEE

Application
ABI

SBI
Hypervisor

Application
ABI

OS

Application
ABI

Application
ABI

OS

Application
ABI

SBI

HBI
HEE

Figure 1.1: Di↵erent implementation stacks supporting various forms of privileged execution.

the OS, which provides the AEE. Just as applications interface with an AEE via an ABI, RISC-V
operating systems interface with a supervisor execution environment (SEE) via a supervisor binary
interface (SBI). An SBI comprises the user-level and supervisor-level ISA together with a set of
SBI function calls. Using a single SBI across all SEE implementations allows a single OS binary
image to run on any SEE. The SEE can be a simple boot loader and BIOS-style IO system in a
low-end hardware platform, or a hypervisor-provided virtual machine in a high-end server, or a
thin translation layer over a host operating system in an architecture simulation environment.

The rightmost configuration shows a virtual machine monitor configuration where multiple multi-
programmed OSs are supported by a single hypervisor. Each OS communicates via an SBI with the
hypervisor, which provides the SEE. The hypervisor communicates with the hypervisor execution
environment (HEE) using a hypervisor binary interface, to isolate the hypervisor from details of
the hardware platform.

Our graphical convention represents abstract interfaces using black boxes with white text, to
separate them from actual components.

The various ABI, SBI, and HBIs are still a work-in-progress, but we anticipate the SBI and HBI
to support devices via virtualized device interfaces similar to virtio [2], and to support device
discovery. In this manner, only one set of device drivers need be written that can support any
OS or hypervisor, and which can also be shared with the boot environment.

Hardware implementations of the RISC-V ISA will generally require additional features beyond the
privileged ISA to support the various execution environments (AEE, SEE, or HEE), but these we
consider separately as part of a hardware abstraction layer (HAL), as shown in Figure 1.2. Note

Application
ABI
AEE
HAL

Hardware

Application
ABI

OS
SBI
SEE

Application
ABI

HAL
Hardware

SBI
Hypervisor

Application
ABI

OS

Application
ABI

Application
ABI

OS

Application
ABI

SBI

HBI
HEE

Hardware
HAL

Figure 1.2: Hardware abstraction layers (HALs) abstract underlying hardware platforms from the
execution environments.

RISC-V	Hypervisor	Specification	- WIP

• Current	privileged	design	can	have	an	M-mode	monitor	that	provides	
physical	resource	partitioning,	can	act	as	simple	hypervisor
• Upcoming	Hypervisor	Extension	Specification	for	“full”	Hypervisors
• Right	now,	an	empty	slot	in	the	privileged	specification

• Want	to	get	involved?
• Hypervisor	Specification	Draft	will	make	the	rounds	soon	on	isa-
dev@groups.riscv.org mailing	list

The	RISC-V	Ecosystem

• Software	Tools
• GCC/glibc/GDB
• LLVM/Clang
• Linux
• Yocto
• Verification	Suite

• Hardware	Tools
• Zynq	FPGA	Infrastructure
• Chisel

• Software	Implementations
• Spike,	“Golden-standard”	ISA	
Simulator
• ANGEL,	JavaScript	ISA	Simulator
• QEMU

• Hardware	Implementations
• Rocket	Chip	Generator

• RV64G	single-issue	in-order	pipeline
• Sodor	Processor	Collection
• BOOM	(Berkeley	Out-of-Order	
Machine)

github.com/riscv	and	github.com/ucb-bar

RISC-V	Target	support	for	QEMU

• Maintained	at	https://github.com/riscv/riscv-qemu
• QEMU	full-system	emulation
• QEMU	on	modern	x86	is	currently	the	fastest	RISC-V	implementation
• A	big	help	in	RISC-V	software	development

Spike QEMU

Timeline	of	RISC-V	“Firsts”

2014 2015 2016

riscv-qemu	
Work	
Started

1st Linux	Boot	
on	QEMU

Fastest	RISC-V	
Implementation

1st RISC-V	
Implementation	

w/	TCP/IP	
Networking

1st Python	
Bringup	on	
RISC-V

1st Java	
Bringup	on	
RISC-V
(Hotspot	
Zero	JVM)

1st RISC-V	
Core	Built	
on	RISC-V	
System	

with	Chisel

…	all	on	QEMU!

RISC-V	Chip	Development	on	RISC-V

+4

Instruction
Mem

Reg
File

IType Sign
Extend

Decoder
Data Mem

ir[24:20]

branch

pc+4

pc
_s

el

ir[31:20]

rs1

ALU

Control
Signals

wb
_s

el

Reg
File

rf_
we

n

va
l

m
em

_r
w

PC

m
em

_v
al

addr
wdata

rdata

Inst

Jump
TargGen

Branch
TargGen

ir[19:15]

ir[31:25],
ir[11:7]

PC+4
jalr

rs2

Branch
CondGen

br_eq?
br_lt?

co
-p

ro
ce

ss
or

 (C
SR

) r
eg

ist
er

s

ir[
11

:7
]

jump

ir[31:12]

Execute Stage

br_ltu?
PC

addr

ir[31:12]

JumpReg
TargGen

Op2Sel

Op1Sel
AluFun

da
ta

wa

w
d

en

addr da
ta

UType

Note: for simplicity, the CSR File
(control and status registers) and
associated datapath is not shown

RISC-V
Sodor 1-Stage

exception

SType Sign
Extend

ir[31:20]

PC

rs2
rs1

rs2

Build	screenshot	courtesy	Michael	Knyszek

Timeline	of	RISC-V	“Firsts”

2014 2015 2016

riscv-qemu	
Work	
Started

1st Linux	Boot	
on	QEMU

Fastest	RISC-V	
Implementation

1st RISC-V	
Implementation	

w/	TCP/IP	
Networking

1st Python	
Bringup	on	
RISC-V

1st Java	
Bringup	on	
RISC-V
(Hotspot	
Zero	JVM)

1st RISC-V	
Core	Built	
on	RISC-V	
System	

with	Chisel

QEMU	
RISC-V	

Priv.	Spec	
1.7	Bump

QEMU	
RISC-V	

Priv.	Spec	
1.9	Bump

Upstreaming
Begins

…	all	on	QEMU!

1st RISC-V	
System	

w/Remote	
GDB

RISC-V	Target	support	for	QEMU

• RISC-V	support	started	in	2014,	evolves	as	the	ISA	does
• Supports	RV64IMAFD	(“RV64G”)	Full-system	emulation
• User	ISA	support	largely	unchanged	since	then	(currently	v2.0)
• Privileged	ISA	nearing	standardization	(currently	v1.9)

• Future	Priv.	Spec	upgrades	to	QEMU	much	simpler	due	to	structural	similarity	of	priv.	
mode	emulation	code	with	Spike
• Pre-1.7	->	1.7	bump,	~1	month
• 1.7	->	1.9	bump,	3	days

• I/O	currently	limited	to	“Host-Target	Interface”	(HTIF)	devices
• Enough	to	boot	Linux,	interact	through	console
• Other	devices	previously	shoehorned	in	(networking,	displays,	consoles)

• Mainly	waiting	on	platform	standardization	and	software	support

hw/riscv/riscv_board.c

• Reference	“board”	designed	to	
match	Spike
• Provides	simple	hardware,	config:
• HTIF-based	console	(simple,	non-
standard	console	device	for	early	boot)
• “Loopback”	Software	Interrupt	
Emulation
• RTC/Timers	compliant	with	RISC-V	v1.9	
privileged	specification
• Reset	Vector	(Boot	ROM)
• Configuration	String

0x8000_0000

0x0000_0000

0x0000_1000

0x4000_0000

... DRAM ...

Conf. String
Reset Vector

RTC
Timers

DRAM Base

DRAM Top

SoftInt Emu.

Base + Size

High

I/O:	HTIF	(old),	Debug	(new)

• Host-Target	Interface	(HTIF)	is	a	relic	of	Berkeley	Test	Chips
• Two	64-bit	registers,	fromhost	and	tohost
• Formerly	provided	network,	block	device,	console,	now	used	only	for	
console,	signaling	test	completion
• Debugging:	HTIF	being	phased	out	on	real	hardware,	replaced	with	
draft	Debug	Unit	specification	(will	be	standardized)
• I/O:	Real	hardware/software	simulators	will	also	phase	out	HTIF	and	
move	to	standard	devices	as	software	support	progresses

Software	Stack	inside	RISC-V	QEMU

• M-mode	runs	secure	boot	and	monitor	(currently	bbl)
• S-mode	runs	OS	(OS	always	runs	virtualized)
• U-mode	runs	application	on	top	of	OS	or	M-mode

M-mode	monitor

U-mode
system	process

S-mode
OS

Device	2	
Interrupts

Device	1	
Interrupts

Other
Interrupts

U-mode
app

Boot	Up

Binary	supplied	to	QEMU	contains:
• bbl – “Berkeley	BootLoader”	performs	Machine-Mode	management	
of	the	system,	exposes	SBI	to	OSes
• vmlinux – Linux	kernel	as	payload	for	bbl
• Includes	a	ramdisk	for	rootfs (currently	limited	device	support)

System	boots	into	hardcoded	boot	rom,	jumps	to	bbl,	
bbl initializes	the	system	in	M-mode,	sets	up	Supervisor	Execution	
Environment	(SEE),	then	loads	and	runs	supplied	kernel,	e.g.	Linux

Testing/Debugging

• The	usual	GDB,	brute	force,	etc
• Passes	the	riscv-tests	standard	test	suite
• Boots	Linux

• With	reasonably	large	software	stacks	on	top	– Python,	Java,	etc.

• Fuzz	testing	against	the	“Golden	Standard”

Fuzz	Testing	with	riscv-torture
• Generates	a	random	sequence	of	instructions	based	on	supplied	
parameters	(%	of	mem	instructions,	floating	point	instructions,	integer	
instructions,	etc.)
• Runs	code	on	Spike	and	other	implementation	of	your	choice

• Spike	is	the	“Golden	Reference”	RISC-V	Simulator,	written	by	the	authors	of	the	RISC-
V	Specs

• Dump	register	state	at	the	end	and	compare
• On	failure,	binary	search	to	pinpoint	instruction	where	things	go	wrong
• Scripts	for	running	riscv-torture	on	QEMU	available	at	
https://github.com/sagark/riscv-qemu-torture
• Accumulated	384	hours	of	failure-free	testing	since	August	Priv.	1.9	update!

target-riscv SLoC*

• ARM	- 45,438
• MIPS	- 37,501	
• x86	- 30,437
• RISC-V	- 5,074

Work	in	Progress/TODOs

• Functionality:	Standard	device	support	(combo	of	QEMU	+	Linux)
• Upstreaming!	– planning	to	start	in	mid-September

• Submitted	a	giant	patch	in	February	as	proof-of-existence	for	gauging	interest	in	
GSoC

• Some	cleanup	based	on	giant-patch	feedback	done	(e.g.	use	built-in	FPU)	
• Latest	RISC-V	Privileged	Spec.	v1.9	bump	done
• TODO:

• More	cleanup	based	on	giant-patch	feedback,	checkpatch
• Rebase	to	master	(currently	v2.5.0)
• Small,	logical	patches

• Future:
• Support	other	ISA	variants,	like	RV32,	Compressed	ISA,	QEMU	Linux-User	Mode

Thanks!	
Questions?

Sagar	Karandikar
sagark@eecs.berkeley.edu

KVM	Forum	2016

https://github.com/riscv/riscv-qemu

